17396

ПОВЕРХНОСТИ И ТЕЛА

Лекция

Математика и математический анализ

ПОВЕРХНОСТИ И ТЕЛА Все поверхности можно подразделить на графические закон образования которых нам не известен и примером такой поверхности может быть топографическая поверхность Земли и геометрические закон которых известен. Часть пространства ограниченная

Русский

2013-07-01

70.5 KB

1 чел.

ПОВЕРХНОСТИ И ТЕЛА

Все поверхности можно подразделить на графические, закон образования которых нам не известен и примером  такой поверхности может быть топографическая поверхность Земли и геометрические, закон которых известен.

Часть пространства, ограниченная со всех сторон поверхностью, называется  телом.

Геометрические поверхности могут быть образованы движением в пространстве прямой или кривой линии, которая называется образующей.

В учебном пособии  Н. Н . Рыжова “Курс начертательной геометрии” , часть 1, М.1995 г.  из многообразия поверхностей выделяются следующие :

линейчатые поверхности, которые могут быть образованы движением в пространстве прямой линии ;

циклические поверхности, которые могут быть образованы движением в пространстве окружности ;

поверхности вращения, которые могут быть образованы движением какой либо линии вокруг закрепленной оси;

винтовые поверхности, при образовании которых хотя бы одна точка образующей совершает винтовое движение.

У линейчатых и циклических поверхностей форма образующей остается постоянной, а закон ее движения меняется.

Для поверхностей вращения закон движения постоянен, но разнообразны формы образующих.

Для винтовых поверхностей возможно как разнообразие  форм образующих, так и широкий диапазон законов движения.

 Закон движения образующей это по сути закон  определения и  построения  образующей в каждый момент ее движения.

Совокупность  геометрических элементов, которая будучи заданной позволяет  реализовать закон образования поверхности, называется определителем поверхности.

Обычно  определитель и закон образования поверхности представляют в определенной знаковой записи, которую называют формулой поверхности.

Эпюр поверхности.  Изображая поверхность в ортогональных проекциях, обычно строят эпюр тех линий или точек , которые определяют единственно возможную форму поверхности.

Рассмотрим представителей семейства линейчатых поверхностей.

Линейчатая поверхность вполне определена, если известны три ее направляющие. Однако, в некоторых случаях достаточно знать расположение только одной направляющей и вершины.

Зададим неподвижную точку  S (вершину) и направляющую k  по которой скользит образующая  b.

                S

                                        b                                 k

                                                    A

                                                      

                                                          

Положение образующей  b проходящей через точку А , как и через любую другую точку направляющей  k  однозначно задает поверхность. В данном случае коническую.

На  эпюре коническая поверхность может быть задана так

Формула поверхности   S   S    

                                                        S 2

                                                     

                                           b 2

                                A2   

           к2                 

                                                         S 1

 

                                              b 1

             к1

                                                                S1 -A1 горизонтальная проекция

                               A1                              построенной произвольной

                                                                образующей конической поверхности.

Если направляющая представляет собой ломаную линию, то  поверхность становится пирамидальной и относится к гранным линейчатым поверхностям.

                S  

                                                              b

                                                                                   A      k

           На практике редко приходится изображать коническую или пирамидальную поверхность. Гораздо чаще изображают тела - конус или пирамиду.       

Если вершина поверхности удалена в бесконечность,  то все образующие пересекающиеся с направляющей  параллельны друг-другу. Когда направляющая  кривая линия - поверхность носит название цилиндрической, а когда она ломаная, то поверхность будет призматической. Таким образом цилиндрическая поверхность это частный случай конической поверхности, а призматическая поверхность частный случай пирамидальной.

На эпюре цилиндрическая поверхность может быть задана так

                                                                      

                u2

                                        

                                    А2

                    u1                                           

                                                                       

                                          А 1  

Формула поверхности      u   u      u .

Линейчатые поверхности с двумя направляющими

и плоскостью параллелизма.

Это линейчатые поверхности заданные двумя направляющими и дополнительным условием - образующая параллельна  плоскости. Плоскость называют плоскостью параллелизма.

В качестве примера рассмотрим  построение  гиперболического параболоида, который в технике часто называют косой плоскостью.

Формула поверхности  a, b, ) (   a, b  .

Направляющими примем две скрещивающиеся прямые  a и b и вертикальную плоскость параллелизма . Образующая скользит по этим направляющим параллельно плоскости . Построение  эпюра  поверхности произведем следующим образом.  Построим проекции двух произвольных образующих   и ` и отметим точки пересечения  с направляющими a и b как  D, E , F, G.

                                                                                                         F2

                             D 2                                                    ”2

                                 

                                                a2

                                                        E2                              b2

                                                                  2   

                                                                                                                             

                                                                              G2

                                                       E1          ”1                               

                                                                                                    

                                               a1                                                   F1

 

                              D1                                                             b1

                                                    1                  

          1                                                                     G1

Проекции  D1 E1,   F1 G1 разделим на произвольное число равных частей и проведем через них горизонтальные проекции образующих. Затем построим фронтальные проекции образующих. Кривая огибающая фронтальные проекции образующих представляет собой параболу.

Подобную задачу вы будете решать в Тетради  (58) на практических занятиях.

Линейчатые поверхности с тремя направляющими прямыми линиями.

Если три направляющие  b , c,  d  прямые линии не параллельны никакой плоскости, то скользящая по ним прямая  образует поверхность однополостного гиперболоида.

Для большей наглядности ограничим  поверхность двумя плоскостями пересекающимися с поверхностью по окружностям  (так как это  представлено на макете).   Сечение поверхности может  представлять  и эллипс.

Построение эпюра поверхности заключается в том, что проекции окружностей -

сечений делят на произвольное число частей . В данном случае на 12 частей.

Деление произведем циркулем начав с горизонтальных проекций сечений.

(На горизонтальной проекции они накладываются друг на друга).

Когда деление произведено как на горизонтальных, так и на фронтальных проекциях соединяем  первую точку (т.1) нижней окружности с пятой точкой (т.5) верхней окружности .   Строим горизонтальную, затем фронтальную проекции линии 1 - 5. Вторую точку (т.2)  нижней окружности  с шестой точкой (т.6) верхней окружности и т.д.. Следите за построением на доске.

Таким образом строится каркас поверхности.

Второй каркас состоит из прямых, соединяющих первую точку верхней  окружности с пятой нижней окружности и т.д..

Очерк поверхности на плоскостях П 2 и П 3 - гиперболы. Он представляет собой огибающие прямые.

На макете видно, что эта поверхность может превращаться в коническую или цилиндрическую, которые являются частными случаями однополостного гиперболоида.

                                 10    9         8           7           6        5     4  

                                       11       12           1           2        3

                                                                 7

                                                8                                6

                                 

                                    9                                                      5

                                

                                 10                                                         4       

                                    11                                                    3                

                                             

                                                12                            2    

                                                                1                                                           

Поверхность эта не развертываемая. Часто используется в технике при строительстве водонапорных башен,  телевизионных мачт и других сооружений.

На прошлой лекции я предлагал построить эллипс по двум осям.

В учебнике Н.С. Кузнецова на 33 странице , задача 3.(Издание 1969 г.)

Для построении эллипса по его осям необходимо выполнить следующее.

Проведем две окружности

с центром в точке О ,

радиусами соответственно                                            Е

равными половине

большой и малой осей                                                     К                                                     

эллипса.

Отметим точку Е ,

пересечения произвольной

прямой  ОЕ с большей окруж-

ностью и точку   ее пересечения

с меньшей окружностью.

Через точку Е проведем линию параллельно малой оси эллипса,

а через точку линию параллельно большой оси эллипса.

Эти прямые пересекаются в точке К, принадлежащей эллипсу. Кроме найденной точки эллипсу принадлежат уже заданные четыре точки расположенные на  концах большой и малой осей.

К следующему разу в тетради для конспектов постройте параболу.


 

А также другие работы, которые могут Вас заинтересовать

53280. Halloween 1.25 MB
  Good morning, boys and girls! I’m glad to see you. I hope you are OK. In our today’s lesson we’ll get to know some new facts about one of the children’s best loved holidays, read the text, sing a song, play a game and do a lot of interesting activities.
53281. Halloween 136.5 KB
  What holiday is it? Ps: It is Halloween T: And what will be the topic of our lesson? Ps: Halloween. T: Yes, you are right. Today we are going to speak about famous American holiday- Halloween. At our lesson we learn new words, make up dialogues, write stories, sing songs and speak about Halloween.
53282. HANDOUT 85 KB
  Fats and sugars are things like oils, biscuits, sweets, chocolate and ice cream. These foods give us energy and are important for our nervous system. But too much of this food can make you fat and can be bad for your teeth. You should not eat more than two sweet or fatty things a day.
53283. Святкування Нового року 69.5 KB
  In England we do not stay at home on the New Year’s Day. We go for a walk to the central square. We listen to the strikes of the largest clock in Great Britain – Big Ben and enjoy the New Year coming. We celebrate Christmas on the 25th of December. On this day our Christmas holiday begin. That is why we like Christmas so much. Soon it will be the New Year , so I sent a postcard to all of you and wish you a happy New Year.
53284. Загальна характеристика дешифраторів 136.5 KB
  У загальному випадку дешифратор має n однофазних входів іноді 2n парафазних і m=2ⁿ виходів де n розрядність довжина коду який дешифрується. Індекс функції Fi визначає номер обраного виходу і відповідає десятковому еквіваленту вхідного коду. Тому дешифратор є перетворювачем вхідного позиційного коду в унітарний вихідний код.
53285. Традиційне харчування українців 63.5 KB
  Учень: Локшина лапша тісто. Учень: Лемішка кашоподібна мучна страва. Учень: Соломаха кашоподібна страва подібна до лемішки однак варили її дещо інакше. Учень: Тетеря рябко страва типу кулешу що готувалась з пшона заправлялась рідким гречаним або житнім тістом.
53286. Сценарій свята в дитячому садку «В українській хаті з Осінню на святі» 47 KB
  Дитина №1: З добрим урожаєм вас вітаємо І здоровя вам бажаємо Під веселий дружний спів Посилаємо уклін Пісня Осінь починається Дитина №2: Завітала осінь до нас на Україну Одягла в червоне намисто калину Дитина №3 Жовте листячко кружляє І доріжки вистеляє Дитина №4 Хмарки в небі пропливають Рясним дощиком лякають Дитина №5 Листячко зелене золотистим стало Осінь чарівниця все розмалювала Дитина №6 Все розмалювала скрізь поприбирала Дитина №7 Жовті колосочки в комору поклала Дитина №8 Пісню журавлину осінь принесла Ягідки калини нам...
53287. HEALTH AND BODY CARE 49.5 KB
  Hello, Children. Today we will speak about very important things in our life. What is important for you? (Запитання до учнів. Вони дають різні відповіді). Look at the blackboard, you can see proverbs theree: “A sound mind in a sound body” “An apple a day keeps the doctor away”. So theme of our lesson is “Health and body care”
53288. What is health for you? 74.5 KB
  A lot of years passed. The men decided to return to their wives and children. They were happy to be again with their families. In the evening, when they opened their sacks, they found out that their stones disappeared. One of them found beautiful flowers in his sack. They were Health, Love, Happiness and Friendship. He gave these flowers to his children and asked to guard them so that they should never leave their family. He told his children that those beautiful flowers were the values of life.