17397

ПОВЕРХНОСТИ И ТЕЛА. Циклические поверхности

Лекция

Математика и математический анализ

ПОВЕРХНОСТИ И ТЕЛА Циклические поверхности Циклические поверхности могут быть образованы движением в пространстве какой либо окружности постоянного или переменного радиуса при перемещении ее центра по криволинейной направляющей а плоскость окружности ост

Русский

2013-07-01

74.5 KB

23 чел.

ПОВЕРХНОСТИ И ТЕЛА

Циклические поверхности

Циклические поверхности,  могут быть образованы движением в пространстве какой - либо  окружности ,  постоянного или переменного радиуса  при перемещении ее центра по криволинейной направляющей , а плоскость окружности остается  перпендикулярной  к этой кривой.

Под  это определение в качестве частного случая  могут подойти уже известные нам как линейчатые поверхности кругового конуса и цилиндра.

Действительно, если направляющая прямая, а окружность постоянного радиуса,

получим цилиндр.

Если направляющая прямая, а окружность монотонно увеличивается (уменьшается) поверхность будет коническая.

Давайте в качестве примера циклической поверхности рассмотрим трубчатую поверхность переменного радиуса.

Для  этой поверхности надо задать во-первых закон направляющей, а во вторых закон изменения радиуса окружности.

Зададим изменение радиуса  R по длине дуги графиком

                  R   

                                           R = f (L )

                      0                                                                       L

              Определитель трубчатой поверхности переменного радиуса будет иметь вид      L ,  R = f (L) .

                                                                       m 2      m 1

                    m (n)

                                                                                                j                                           

                                                 O      

   

                         O n                                             O2      O1

Если радиус постоянный, то поверхность называется просто трубчатой.

Если направляющей будет окружность, то при движении по ней окружности постоянного радиуса получится торовая поверхность.

Более подробно мы остановимся на рассмотрении торовых поверхностей в разделе поверхности вращения.

Давайте приведем еще пример циклической поверхности.

Таким примером может служить поверхность цилиндрической винтовой пружины.

           

                                                                          h            

                                                                                r

                                                         

                                                             R

Подсчитаем число параметров которые задают некоторые частные виды циклических поверхностей.

Для цилиндра  вращения это один параметр - радиус,  для тора это два параметра это радиус окружности направляющей и радиус окружности которая перемещается в плоскости перпендикулярной направляющей, для трубчатой винтовой поверхности (поверхность пружины) это три параметра -

два радиуса (R, r ) и шаг  (h).

               П О В Е Р Х Н О С Т И   В Р А Щ Е Н И Я                   

Поверхности вращения, могут быть образованы движением какой либо линии (образующей) вокруг закрепленной оси. Образующая может быть как плоской так и пространственной кривой.

Для поверхностей вращения закон движения постоянен, но разнообразны формы образующих.

В примере в качестве образующей  примем кривую k состоящую из дуг двух окружностей ( R , r)  , которая вращается вокруг оси  j.

Любая точка кривой  k описывает вокруг оси окружность лежащую в плоскости перпендикулярной оси и с центром принадлежащим оси. Эти окружности называют параллелями поверхности. Наибольшую из параллелей называют экватором, а наименьшую - горлом.

Если плоскость которой рассекают поверхность включает в себя ось, то получаемые кривые называют меридианами. Все меридианы равны между собой.

Образующая k  лежит на одном из меридианов.

Меридиан расположенный во фронтальной плоскости и проектирующийся на фронтальную плоскость в натуральную величину называется главным меридианом.

Для построения главного меридиана образующую k вращают до совпадения с фронтальной плоскостью.

Если необходимо построить горизонтальную проекцию точки М принадлежащей поверхности, то достаточно провести через точку М` параллель m`1.

и найти ее горизонтальную проекцию m 1 на которой будет лежать М .

                                                      j ` ось

                                                                          

                                                                      k`

            параллель (m`1)                           горло(m`2)  экватор (m`3)

                                                                                           

                                 M`

   меридиан                                                главный меридиан

Здесь окружности                                               m 1

концентрические.                                                   m 2   

                                                                     k          m 3

                                 M

                                       j   

где :

m` , m ,     j` , j ,  M`, M,  

k` , k   соответственно, фронтальные и горизонтальные проекции.

К поверхностям вращения относится сфера (тело - шар).

Сфера может быть образована вращением окружности вокруг диаметра.

  m m j m j    C m  j  m i m j .

Проецируется на все плоскости ввиде равных окружностей.

Экватор шара на горизонтальную плоскость проецируется ввиде круга, а на фронтальную плоскость ввиде прямой линии параллельной оси  Х.

                                       А2                                                          А3

                                                            А1

                                                     

Всякое сечение,  параллельное  экватору  будет проецироваться на горизонтальную плоскость проекций ввиде окружности.

Воспользуемся этим для нахождения проекций точки А находящейся на поверхности сферы.

ТОР - поверхность вращения часто встречаемая в деталях машин.

Тор получается вращением окружности вокруг оси, расположенной в плоскости  окружности, но не проходящей через ее центр.

Торовую поверхность вы видите на демонстрируемой модели. Это открытый тор. Окружность при вращении не пресекает ось и такой тор представляет собой кольцо.

Изобразим его основной чертеж.

                     j 2

                                                                       A2

                                             m 2

                                            m 1                 A 1

                             

                     j 1

Запишем формулу этой поверхности

m j m m  Г  j m j  m i m j

Тор бывает закрытым. Это случай когда окружность касается  оси вращения или пересекает ее. Образно эту поверхность можно представить ввиде яблока.

Формула этой поверхности    Ф    m m, j,  m    j m j mi m j.

Произвольная прямая пересекает тор в четырех точках.  В аналитической геометрии доказывается , что тор это алгебраическая поверхность четвертого порядка.

                                                j 2

                                                                   m 2

                                                                          A2

                                                 j 1            m1     A1

  

Коротко остановимся на поверхностях вращения второго порядка.

К ним относится эллипсоид вращения, образующийся вращением эллипса вокруг его оси. В зависимости от того какая ось эллипса выбрана осью вращения получаем сжатый  или вытянутый эллипсоид вращения.

Вы уже освоили построение эллипса по двум заданным осям,  теперь попробуйте изобразить в тетради основной чертеж эллипсоида вращения.

Хочу обратит ваше внимание, что в частном случае эллипс превращается в окружность , а эллипсоид в сферу.

ПАРАБОЛОИД ВРАЩЕНИЯ ОБРАЗУЕТСЯ ВРАЩЕНИЕМ ПАРАБОЛЫ ВОКРУГ ЕЕ ОСИ  ОZ .

                                    j2

                                                A2

                      j1

                                      A1   

ОДНОПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ  МОЖЕТ БЫТЬ ОБРАЗОВАН ВРАЩЕНИЕМ ГИПЕРБОЛЫ ВОКРУГ ЕЕ МНИМОЙ ОСИ  ОZ.   

                                 10    9         8           7           6        5     4  

                                       11       12           1           2        3

                                                                 7

                                                8                                6

                                 

                                    9                                                      5

                                

                                 10                                                         4       

                                    11                                                    3                

                                             

                                                12                            2    

                                                                1                                                           

ДВУПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ ОБРАЗУЕТСЯ  ВРАЩЕНИЕМ ГИПЕРБОЛЫ ВОКРУГ ЕЕ ДЕЙСТВИТЕЛЬНОЙ ОСИ .

В отличие от однополостного он не является одновременно и линейчатой поверхностью. Он не может быть образован движением прямой.

Комплексный чертеж  двуполостного гиперболоида прошу построить самостоятельно.


 

А также другие работы, которые могут Вас заинтересовать

11317. Триггеры задержки и универсальные триггеры 136 KB
  Занятие 4. Триггеры задержки и универсальные триггеры Учебные методические и воспитательные цели: 1. Изучить принципы построения триггеров с раздельным и счетным запуском. 2. Совершенствовать умение выделять главное для качественного конспектирования учебного ма...
11318. Регистры и их применение. 109.5 KB
  Занятие 6. Регистры Учебные методические и воспитательные цели: 1.Изучить принципы построения последовательных и параллельных регистров. 2. Показать методику увязки изучаемых вопросов с применением в технике связи. 3. Воспитывать уважение к изучаемой дисципли...
11319. Счетчики и их применение 142.5 KB
  Занятие 7. Счетчики Учебные методические и воспитательные цели: 1. Изучить принципы построения и разновидности цифровых счетчиков импульсов. 2. Показать методику увязки учебного материала с ранее изученным. 3. Воспитывать умение выделять главное при конспектиро
11320. Запоминающие устройства и их применения 163.5 KB
  Занятие 9 Запоминающие устройства Учебные методические и воспитательные цели: 1. Изучить принципы построения и разновидности запоминающих устройств. 2. Показать методику увязки учебного материала с ранее изученным. 3. Воспитывать умение выделять главное при консп...
11321. Аналого-цифровые преобразователи 125.5 KB
  Занятие 10 Аналогоцифровые преобразователи Учебные и воспитательные цели: 1. Изучить принципы построения цифроаналоговых и аналогоцифровых преобразователей. 2. Воспитывать инженерное мышление. План лекции №№ п/п У
11322. Микропроцессор К580ВМ80 87.5 KB
  Занятие 1 Микропроцессор К580ВМ80 Учебные методические и воспитательные цели: 1. Изучить особенности построения универсального 8разрядного микропроцессора К580ВМ80. 2. Совершенствовать умение выделять главное для качественного конспектирования учебного материала. ...
11323. Микропроцессор К1810ВМ86 110 KB
  Занятие 2 Микропроцессор К1810ВМ86 Учебные методические и воспитательные цели: 1. Изучить особенности построения универсального 16разрядного микропроцессора К1810ВМ86 и принципы адресации его памяти.. 2. Формировать творческое мышление. 3. Прививать любовь к професси
11324. Применение универсальных микропроцессоров 102 KB
  Занятие 3 Применение универсальных микропроцессоров Учебные методические и воспитательные цели: 1. Изучить принципы построения и работы персонального компьютера и применение его для моделирования различных процессов. 2. Формировать творческое мышление. 3. Прив...
11325. Сигнальный процессор 144 KB
  Занятие 5 Сигнальный процессор Учебные и воспитательные цели: Изучить устройство и принципы функционирования сигнального процессора. Прививать умение выделять главное для качественного конспектирования учебного материала. Прививать интерес к дисцип