17397

ПОВЕРХНОСТИ И ТЕЛА. Циклические поверхности

Лекция

Математика и математический анализ

ПОВЕРХНОСТИ И ТЕЛА Циклические поверхности Циклические поверхности могут быть образованы движением в пространстве какой либо окружности постоянного или переменного радиуса при перемещении ее центра по криволинейной направляющей а плоскость окружности ост

Русский

2013-07-01

74.5 KB

23 чел.

ПОВЕРХНОСТИ И ТЕЛА

Циклические поверхности

Циклические поверхности,  могут быть образованы движением в пространстве какой - либо  окружности ,  постоянного или переменного радиуса  при перемещении ее центра по криволинейной направляющей , а плоскость окружности остается  перпендикулярной  к этой кривой.

Под  это определение в качестве частного случая  могут подойти уже известные нам как линейчатые поверхности кругового конуса и цилиндра.

Действительно, если направляющая прямая, а окружность постоянного радиуса,

получим цилиндр.

Если направляющая прямая, а окружность монотонно увеличивается (уменьшается) поверхность будет коническая.

Давайте в качестве примера циклической поверхности рассмотрим трубчатую поверхность переменного радиуса.

Для  этой поверхности надо задать во-первых закон направляющей, а во вторых закон изменения радиуса окружности.

Зададим изменение радиуса  R по длине дуги графиком

                  R   

                                           R = f (L )

                      0                                                                       L

              Определитель трубчатой поверхности переменного радиуса будет иметь вид      L ,  R = f (L) .

                                                                       m 2      m 1

                    m (n)

                                                                                                j                                           

                                                 O      

   

                         O n                                             O2      O1

Если радиус постоянный, то поверхность называется просто трубчатой.

Если направляющей будет окружность, то при движении по ней окружности постоянного радиуса получится торовая поверхность.

Более подробно мы остановимся на рассмотрении торовых поверхностей в разделе поверхности вращения.

Давайте приведем еще пример циклической поверхности.

Таким примером может служить поверхность цилиндрической винтовой пружины.

           

                                                                          h            

                                                                                r

                                                         

                                                             R

Подсчитаем число параметров которые задают некоторые частные виды циклических поверхностей.

Для цилиндра  вращения это один параметр - радиус,  для тора это два параметра это радиус окружности направляющей и радиус окружности которая перемещается в плоскости перпендикулярной направляющей, для трубчатой винтовой поверхности (поверхность пружины) это три параметра -

два радиуса (R, r ) и шаг  (h).

               П О В Е Р Х Н О С Т И   В Р А Щ Е Н И Я                   

Поверхности вращения, могут быть образованы движением какой либо линии (образующей) вокруг закрепленной оси. Образующая может быть как плоской так и пространственной кривой.

Для поверхностей вращения закон движения постоянен, но разнообразны формы образующих.

В примере в качестве образующей  примем кривую k состоящую из дуг двух окружностей ( R , r)  , которая вращается вокруг оси  j.

Любая точка кривой  k описывает вокруг оси окружность лежащую в плоскости перпендикулярной оси и с центром принадлежащим оси. Эти окружности называют параллелями поверхности. Наибольшую из параллелей называют экватором, а наименьшую - горлом.

Если плоскость которой рассекают поверхность включает в себя ось, то получаемые кривые называют меридианами. Все меридианы равны между собой.

Образующая k  лежит на одном из меридианов.

Меридиан расположенный во фронтальной плоскости и проектирующийся на фронтальную плоскость в натуральную величину называется главным меридианом.

Для построения главного меридиана образующую k вращают до совпадения с фронтальной плоскостью.

Если необходимо построить горизонтальную проекцию точки М принадлежащей поверхности, то достаточно провести через точку М` параллель m`1.

и найти ее горизонтальную проекцию m 1 на которой будет лежать М .

                                                      j ` ось

                                                                          

                                                                      k`

            параллель (m`1)                           горло(m`2)  экватор (m`3)

                                                                                           

                                 M`

   меридиан                                                главный меридиан

Здесь окружности                                               m 1

концентрические.                                                   m 2   

                                                                     k          m 3

                                 M

                                       j   

где :

m` , m ,     j` , j ,  M`, M,  

k` , k   соответственно, фронтальные и горизонтальные проекции.

К поверхностям вращения относится сфера (тело - шар).

Сфера может быть образована вращением окружности вокруг диаметра.

  m m j m j    C m  j  m i m j .

Проецируется на все плоскости ввиде равных окружностей.

Экватор шара на горизонтальную плоскость проецируется ввиде круга, а на фронтальную плоскость ввиде прямой линии параллельной оси  Х.

                                       А2                                                          А3

                                                            А1

                                                     

Всякое сечение,  параллельное  экватору  будет проецироваться на горизонтальную плоскость проекций ввиде окружности.

Воспользуемся этим для нахождения проекций точки А находящейся на поверхности сферы.

ТОР - поверхность вращения часто встречаемая в деталях машин.

Тор получается вращением окружности вокруг оси, расположенной в плоскости  окружности, но не проходящей через ее центр.

Торовую поверхность вы видите на демонстрируемой модели. Это открытый тор. Окружность при вращении не пресекает ось и такой тор представляет собой кольцо.

Изобразим его основной чертеж.

                     j 2

                                                                       A2

                                             m 2

                                            m 1                 A 1

                             

                     j 1

Запишем формулу этой поверхности

m j m m  Г  j m j  m i m j

Тор бывает закрытым. Это случай когда окружность касается  оси вращения или пересекает ее. Образно эту поверхность можно представить ввиде яблока.

Формула этой поверхности    Ф    m m, j,  m    j m j mi m j.

Произвольная прямая пересекает тор в четырех точках.  В аналитической геометрии доказывается , что тор это алгебраическая поверхность четвертого порядка.

                                                j 2

                                                                   m 2

                                                                          A2

                                                 j 1            m1     A1

  

Коротко остановимся на поверхностях вращения второго порядка.

К ним относится эллипсоид вращения, образующийся вращением эллипса вокруг его оси. В зависимости от того какая ось эллипса выбрана осью вращения получаем сжатый  или вытянутый эллипсоид вращения.

Вы уже освоили построение эллипса по двум заданным осям,  теперь попробуйте изобразить в тетради основной чертеж эллипсоида вращения.

Хочу обратит ваше внимание, что в частном случае эллипс превращается в окружность , а эллипсоид в сферу.

ПАРАБОЛОИД ВРАЩЕНИЯ ОБРАЗУЕТСЯ ВРАЩЕНИЕМ ПАРАБОЛЫ ВОКРУГ ЕЕ ОСИ  ОZ .

                                    j2

                                                A2

                      j1

                                      A1   

ОДНОПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ  МОЖЕТ БЫТЬ ОБРАЗОВАН ВРАЩЕНИЕМ ГИПЕРБОЛЫ ВОКРУГ ЕЕ МНИМОЙ ОСИ  ОZ.   

                                 10    9         8           7           6        5     4  

                                       11       12           1           2        3

                                                                 7

                                                8                                6

                                 

                                    9                                                      5

                                

                                 10                                                         4       

                                    11                                                    3                

                                             

                                                12                            2    

                                                                1                                                           

ДВУПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ ОБРАЗУЕТСЯ  ВРАЩЕНИЕМ ГИПЕРБОЛЫ ВОКРУГ ЕЕ ДЕЙСТВИТЕЛЬНОЙ ОСИ .

В отличие от однополостного он не является одновременно и линейчатой поверхностью. Он не может быть образован движением прямой.

Комплексный чертеж  двуполостного гиперболоида прошу построить самостоятельно.


 

А также другие работы, которые могут Вас заинтересовать

50129. Исследование процессов накопления и релаксации заряда в диэлектрических материалах 1.32 MB
  Определение постоянной времени RCцепи. Даже если цепь не содержит конденсаторов всегда присутствует электрическая емкость изоляции и в ней возникают токи смещения обусловленные изменением электрического поля во времени. В цепях постоянного тока распределение электрических зарядов на проводниках и токов на участках цепи стационарно то есть неизменно во времени. Если на какомто участке цепи происходят изменения силы тока или напряжения то другие участки цепи могут почувствовать эти изменения только через некоторое время которое по...
50130. Определение коэффициента термического расширения (объемного) жидкости 116 KB
  Цель работы: 1 измерить изменение объема воды при нагреве ее от 0 С до 90 С; 2 определить показатель коэффициента термического расширения. Особенный интерес представляет поведение воды в диапазоне температур 0 10 С. В данной работе исследуется изменение объема воды в диапазоне температур от 0 С до 40 90 С максимальная температура ограничена длиной измерительной трубки. Для проведения измерений в интервале 0 20 С термостат в начале работы заполняется смесью льда и воды что обеспечивает начальную температуру 0 С.
50131. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПЛОСКОПАРАЛЛЕЛЬНОЙ ПЛАСТИНЫ С ПОМОЩЬЮ МИКРОСКОПА 160 KB
  Углы падения отражения и преломления отсчитываются от нормали к границе раздела двух сред ON. Направления этих лучей определяются следующими законами геометрической оптики: луч падающий АО луч отраженный ОВ луч преломленный ОД и нормальON восстановленная в точке падения О лежат в одной плоскости; угол отражения NOB численно равен углу падения ON; синус угла падения i относится к синусу угла преломления r как скоростьсвета в первой среде υ1 относится к скорости света во второй среде υ2. 1 Последний закон в оптике известен как...
50132. Тактика гри у футболі. Індивідуальні, групові і командні дії в нападі і захисті 27.5 KB
  Індивідуальні групові і командні дії в нападі і захисті. Система гри -– це основний спосіб гри команди який визначає особливості розташування і пересування гравців у захисті і нападі для досягнення успіху в матчі. Гра в захисті й нападі вимагає від гравців оперативного розв’язання ігрових ситуацій використання різноманітних тактичних засобів. Тактика гри у футбол реалізується в індивідуальних групових і командних діях у нападі й захисті.
50134. ВЕРОЯТНОСТНО-ЭКОНОМИЧЕСКИЙ МЕТОД РАСЧЕТА СТАЛЬНЫХ КОНСТРУКЦИЙ 172.5 KB
  Принципиальное отличие этого метода от заложенного в нормы метода расчета по предельным состояниям состоит в том что в расчет вводится не нормативные или расчетные значения нагрузок и прочностных свойств конструкционных материалов а СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ их распределений СРЕДНИЕ ЗНАЧЕНИЯ И КОЭФФИЦИЕНТЫ ВАРИАЦИИ. Коэффициент надежности по ответственности не используется. Таблица 1 Статистические характеристики давления ВЕТРА Ветровой район Среднее значение давления ветра кПа кг м2 Коэффициенты вариации Vf k = qo I II III IV...
50135. ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ КЛЕМАНА-ДЕЗОРМА 92.5 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Введение Первый закон термодинамики утверждает что количество теплоты DQ сообщенное газу расходуется на изменение внутренней энергии газа DU и на работу А совершаемую газом: DQ = DU . Теплоемкостью газа называется величина равная количеству теплоты необходимой для нагревания данной массы газа на один кельвин. T0...
50136. Фреймы, плавающие фреймы, сегментирование изображения, формы, бегущая строка 46.5 KB
  Клик на сегментах Бегущая строка и Сегментированные изображения должен открывать файл с любой картинкой в новом окне. Страница с фреймами Бегущая строка top Бег.
50137. Изучение рынка операторов сотовой и пейджинговой связи г. Санкт-Петербурга 228.5 KB
  Удовлетворить запросы потребителей - непростая задача. Прежде всего нужно хорошо изучить потребителя, т.е. ответить на вопросы кто покупает, какое количество, по какой цене, с ка-кой целью, для удовлетворения каких потребностей, где покупает. Обеспечить, если это необходимо, сервис. Для этого проводят маркетинговые исследования. Изучить всех покупателей продукта невозможно, да и ненужно. Целесообразно найти тот сегмент потребителей, который обеспечит основной сбыт.