17397

ПОВЕРХНОСТИ И ТЕЛА. Циклические поверхности

Лекция

Математика и математический анализ

ПОВЕРХНОСТИ И ТЕЛА Циклические поверхности Циклические поверхности могут быть образованы движением в пространстве какой либо окружности постоянного или переменного радиуса при перемещении ее центра по криволинейной направляющей а плоскость окружности ост

Русский

2013-07-01

74.5 KB

23 чел.

ПОВЕРХНОСТИ И ТЕЛА

Циклические поверхности

Циклические поверхности,  могут быть образованы движением в пространстве какой - либо  окружности ,  постоянного или переменного радиуса  при перемещении ее центра по криволинейной направляющей , а плоскость окружности остается  перпендикулярной  к этой кривой.

Под  это определение в качестве частного случая  могут подойти уже известные нам как линейчатые поверхности кругового конуса и цилиндра.

Действительно, если направляющая прямая, а окружность постоянного радиуса,

получим цилиндр.

Если направляющая прямая, а окружность монотонно увеличивается (уменьшается) поверхность будет коническая.

Давайте в качестве примера циклической поверхности рассмотрим трубчатую поверхность переменного радиуса.

Для  этой поверхности надо задать во-первых закон направляющей, а во вторых закон изменения радиуса окружности.

Зададим изменение радиуса  R по длине дуги графиком

                  R   

                                           R = f (L )

                      0                                                                       L

              Определитель трубчатой поверхности переменного радиуса будет иметь вид      L ,  R = f (L) .

                                                                       m 2      m 1

                    m (n)

                                                                                                j                                           

                                                 O      

   

                         O n                                             O2      O1

Если радиус постоянный, то поверхность называется просто трубчатой.

Если направляющей будет окружность, то при движении по ней окружности постоянного радиуса получится торовая поверхность.

Более подробно мы остановимся на рассмотрении торовых поверхностей в разделе поверхности вращения.

Давайте приведем еще пример циклической поверхности.

Таким примером может служить поверхность цилиндрической винтовой пружины.

           

                                                                          h            

                                                                                r

                                                         

                                                             R

Подсчитаем число параметров которые задают некоторые частные виды циклических поверхностей.

Для цилиндра  вращения это один параметр - радиус,  для тора это два параметра это радиус окружности направляющей и радиус окружности которая перемещается в плоскости перпендикулярной направляющей, для трубчатой винтовой поверхности (поверхность пружины) это три параметра -

два радиуса (R, r ) и шаг  (h).

               П О В Е Р Х Н О С Т И   В Р А Щ Е Н И Я                   

Поверхности вращения, могут быть образованы движением какой либо линии (образующей) вокруг закрепленной оси. Образующая может быть как плоской так и пространственной кривой.

Для поверхностей вращения закон движения постоянен, но разнообразны формы образующих.

В примере в качестве образующей  примем кривую k состоящую из дуг двух окружностей ( R , r)  , которая вращается вокруг оси  j.

Любая точка кривой  k описывает вокруг оси окружность лежащую в плоскости перпендикулярной оси и с центром принадлежащим оси. Эти окружности называют параллелями поверхности. Наибольшую из параллелей называют экватором, а наименьшую - горлом.

Если плоскость которой рассекают поверхность включает в себя ось, то получаемые кривые называют меридианами. Все меридианы равны между собой.

Образующая k  лежит на одном из меридианов.

Меридиан расположенный во фронтальной плоскости и проектирующийся на фронтальную плоскость в натуральную величину называется главным меридианом.

Для построения главного меридиана образующую k вращают до совпадения с фронтальной плоскостью.

Если необходимо построить горизонтальную проекцию точки М принадлежащей поверхности, то достаточно провести через точку М` параллель m`1.

и найти ее горизонтальную проекцию m 1 на которой будет лежать М .

                                                      j ` ось

                                                                          

                                                                      k`

            параллель (m`1)                           горло(m`2)  экватор (m`3)

                                                                                           

                                 M`

   меридиан                                                главный меридиан

Здесь окружности                                               m 1

концентрические.                                                   m 2   

                                                                     k          m 3

                                 M

                                       j   

где :

m` , m ,     j` , j ,  M`, M,  

k` , k   соответственно, фронтальные и горизонтальные проекции.

К поверхностям вращения относится сфера (тело - шар).

Сфера может быть образована вращением окружности вокруг диаметра.

  m m j m j    C m  j  m i m j .

Проецируется на все плоскости ввиде равных окружностей.

Экватор шара на горизонтальную плоскость проецируется ввиде круга, а на фронтальную плоскость ввиде прямой линии параллельной оси  Х.

                                       А2                                                          А3

                                                            А1

                                                     

Всякое сечение,  параллельное  экватору  будет проецироваться на горизонтальную плоскость проекций ввиде окружности.

Воспользуемся этим для нахождения проекций точки А находящейся на поверхности сферы.

ТОР - поверхность вращения часто встречаемая в деталях машин.

Тор получается вращением окружности вокруг оси, расположенной в плоскости  окружности, но не проходящей через ее центр.

Торовую поверхность вы видите на демонстрируемой модели. Это открытый тор. Окружность при вращении не пресекает ось и такой тор представляет собой кольцо.

Изобразим его основной чертеж.

                     j 2

                                                                       A2

                                             m 2

                                            m 1                 A 1

                             

                     j 1

Запишем формулу этой поверхности

m j m m  Г  j m j  m i m j

Тор бывает закрытым. Это случай когда окружность касается  оси вращения или пересекает ее. Образно эту поверхность можно представить ввиде яблока.

Формула этой поверхности    Ф    m m, j,  m    j m j mi m j.

Произвольная прямая пересекает тор в четырех точках.  В аналитической геометрии доказывается , что тор это алгебраическая поверхность четвертого порядка.

                                                j 2

                                                                   m 2

                                                                          A2

                                                 j 1            m1     A1

  

Коротко остановимся на поверхностях вращения второго порядка.

К ним относится эллипсоид вращения, образующийся вращением эллипса вокруг его оси. В зависимости от того какая ось эллипса выбрана осью вращения получаем сжатый  или вытянутый эллипсоид вращения.

Вы уже освоили построение эллипса по двум заданным осям,  теперь попробуйте изобразить в тетради основной чертеж эллипсоида вращения.

Хочу обратит ваше внимание, что в частном случае эллипс превращается в окружность , а эллипсоид в сферу.

ПАРАБОЛОИД ВРАЩЕНИЯ ОБРАЗУЕТСЯ ВРАЩЕНИЕМ ПАРАБОЛЫ ВОКРУГ ЕЕ ОСИ  ОZ .

                                    j2

                                                A2

                      j1

                                      A1   

ОДНОПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ  МОЖЕТ БЫТЬ ОБРАЗОВАН ВРАЩЕНИЕМ ГИПЕРБОЛЫ ВОКРУГ ЕЕ МНИМОЙ ОСИ  ОZ.   

                                 10    9         8           7           6        5     4  

                                       11       12           1           2        3

                                                                 7

                                                8                                6

                                 

                                    9                                                      5

                                

                                 10                                                         4       

                                    11                                                    3                

                                             

                                                12                            2    

                                                                1                                                           

ДВУПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ ОБРАЗУЕТСЯ  ВРАЩЕНИЕМ ГИПЕРБОЛЫ ВОКРУГ ЕЕ ДЕЙСТВИТЕЛЬНОЙ ОСИ .

В отличие от однополостного он не является одновременно и линейчатой поверхностью. Он не может быть образован движением прямой.

Комплексный чертеж  двуполостного гиперболоида прошу построить самостоятельно.


 

А также другие работы, которые могут Вас заинтересовать

35091. ПРОЕКТ СОЗДАНИЯ МОЛОДЕЖНОГО ТУРА С ВКЛЮЧЕНИЕМ АНИМАЦИОННЫХ ПРОГРАММ В ТУРФИРМЕ «WORLD TRAVEL» 903 KB
  Турфирма World Travel является туроператором организующим преимущественно развлекательные туры за рубеж: в Египет Турцию Болгарию; а также на территории курортных районов России. World Travel обеспечивает высокий уровень обслуживания клиентов благодаря: высокому профессионализму команды; собственным чартерным рейсам; собственному автобусному парку; прямым связям с крупнейшими российскими и зарубежными туристскими фирмами отелями и авиакомпаниями. Турфирма предлагает своим клиентам спектр туристских услуг: отдых экскурсионные...
35092. Расчет главной балки 1.26 MB
  Подбор сечения балки настила. Расчёт главной балки. Компоновка сечения главной балки. Изменение сечения главной балки по длине пролета.
35093. Здоровье ребенка и здравый смысл его родственников 1.91 MB
  Евгений Комаровский ЗДОРОВЬЕ РЕБЕНКА И ЗДРАВЫЙ СМЫСЛ ЕГО РОДСТВЕННИКОВ Я полагаю что мы пришли после других для того чтобы делать лучше их чтобы не впадать в их ошибки в их заблуждения и суеверия. Зачем читать о правилах питания беременной женщины когда у ребенка запор Открываем главу про запор получаем необходимые сведения и с чувством глубокого удовлетворения пытаемся претворить в жизнь советы и рекомендации.
35094. Социальное влияние 6.33 MB
  Вопросы и упражнения Глава 3ВЛИЯНИЕ НА УСТАНОВКИ ЧЕРЕЗ ПОВЕДЕНИЕ:ДЕЙСТВИЯ СТАНОВЯТСЯ УБЕЖДЕНИЯМИ Систематический анализ: активное мышление порождает прочные установки Установки: независимые зависимости Установки переходят в поведение: у последней черты.
35095. Зубчатые передачи. Подрезание профиля зуба. Корригирование зубчатого колеса 340.5 KB
  В машиностроении принято малое зубчатое колесо с меньшим числом зубьев называть шестернёй а большое колесом. Зубчатые колёса обычно используются па́рами с разным числом зубьев с целью преобразования вращающего момента и числа оборотов валов на входе и выходе. А Поперечный профиль зуба Профиль зубьев колёс как правило имеет эвольвентную боковую форму. Однако существуют передачи с круговой формой профиля зубьев передача Новикова с одной и двумя линиями зацепления и с циклоидальной.
35096. Анализ хозяйственной деятельности предприятия 11.34 MB
  Переход к рыночной экономике требует от предприятий повышения эффективности производства конкурентоспособности продукции и услуг на основе внедрения достижений научнотехнического прогресса эффективных форм хозяйствования и управления производством преодоления бесхозяйственности активизации предпринимательства инициативы и т. Например чтобы понять сущность себестоимости продукции необходимо знать не только из каких элементов она состоит но и от чего зависит ее величина по каждой статье затрат. Чем...
35099. Теория организации. Система государственного и муниципального управления. Региональная экономика и управление 283.5 KB
  В организацию входят ее участники, члены, работники, поскольку организация — это не один человек, а общность людей, причем людей, не просто связанных между собой, а взаимосвязанных, где действия одного обусловлены действиями другого и вызывают их.