17520

Фільтрація сигналів і зображень

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №4 На тему: Фільтрація сигналів і зображень Мета роботи Ознайомитися з методами та засобами фільтрації сигналів та зображень. Проілюструвати процес фільтрації зображення в просторовій області. Теоретичні відомості Цифрова фільтрація д

Украинкский

2013-07-01

256.5 KB

55 чел.

Лабораторна робота №4

На тему: «Фільтрація сигналів і зображень»

Мета роботи

Ознайомитися з методами та засобами фільтрації сигналів та зображень. Проілюструвати процес фільтрації зображення в просторовій області.

Теоретичні відомості

Цифрова фільтрація даних (сигналів) є одною з основних і найпоширеніших задач цифрової обробки інформації. Під фільтрацією будемо розуміти будь-яке перетворення інформації, в нашому випадку - сигналів, при якому у вхідній послідовності оброблюваних даних цілеспрямовано змінюються певні співвідношення (динамічні або частотні) між різними компонентами цих даних. До основних операцій фільтрації інформації відносять: згладжування; прогнозування; диференціювання; інтегрування; поділ на певні складові; виділення інформаційних (корисних) сигналів; придушення шумів (завад).

У загальному випадку терміном цифровий фільтр (ЦФ) називають апаратну або програмну реалізацію математичного алгоритму, входом якого є цифровий сигнал, а виходом – інший цифровий сигнал з певним чином модифікованою формою і/або амплітудною і фазовою характеристикою. Класифікація цифрових фільтрів звичайно базується на функціональних ознаках алгоритмів цифрової фільтрації, відповідно до якого ЦФ підрозділяються на 4 групи:

  •  фільтри частотної селекції;
  •  оптимальні (квазіоптимальні);
  •  адаптивні;

евристичні.

Відомі методи цифрової обробки даних, які є методами цифрової фільтрації такі як метод згладжування відліків у ковзаючому вікні постійної довжини. Наприклад для лінійного згладжування даних за п’ятьма точками з однаковими ваговими коефіцієнтами використовується формула:

yk = 0.2(xk-2+xk-1+xk+xk+1+xk+2).

З точки зору цифрової фільтрації це двосторонній симетричний нерекурсивний фільтр:

yk =bn xk-n,     bn = 0,2.

Фільтрація зображень в часовій (просторовій) області

В часовій і просторовій області процес фільтрації сигналів описується рівнянням одновимірної згортки:

,

де:  - вихідний сигнал;

 вхідний сигнал;

 імпульсна характеристика фільтру.

Фільтрація  зображень в часовій області зводиться до двовимірної лінійної згортки:

,

де:  - вхідне зображення;

- фільтроване зображення;

- імпульсна характеристика фільтру (маска, що визначає вид фільтрації);

- розмір зображення,  ;

- розмір вікна фільтрації (апертури);

, .

Очевидно, що процес фільтрації – це послідовне обчислення згортки обраної маски з «вікном» (частиною) зображення. Елементи вікна, розташовані в області точки для якої обчислюється згортка. Таким чином, маска фільтру, її ще називають апертурою, «пробігає» всі елементи зображення, утворюючи вихідне зображення.

Маски для низькочастотної та високочастотної фільтрації визначають тип фільтрації. Низькочастотна фільтрація забезпечує згладжування шуму, тобто усунення високочастотних складових. Вона досягається за рахунок використання масок з додатними елементами. Прикладом таких масок можуть бути наступні масиви, що мають розмір  точки. Зауважимо, що для того, щоб процедура пригашення шуму не приводила до зміщення середньої яскравості зображення ці масиви є нормованими.

; ; .

Для високочастотної фільтрації можна навести такі маски:

;   ;  

Особливістю таких апертур є те, що алгебраїчно сума елементів кожної з них дорівнює одиниці. Використання високочастотних масок приводить до виділення границь об’єктів, тому може бути використана, наприклад, маска Роберта, різницевий оператор Собеля, Кірша.

Широке поширення набули методи контрастування (один з випадків високочастотної - фільтрації), в яких використовується оператор Лапласа. На практиці він заміняється згорткою зображення з однією з масок:

;  ;  .

Алгоритми лінійної фільтрації

Виконувати лінійну фільтрацію двовимірних масивів (зображень) можна звикористанням алгоритмів, що приводяться нижче. Перший з них реалізовує процес безпосередньо за формулою згортки, а другий – зменшує необхідний об’єм пам’яті, що може суттєво впливати на швидкість обробки при великих розмірах вхідного зображення.

В обох із запропонованих алгоритмів, границі зображень обробляються без фільтрації, тобто у вихідній матриці елементи крайніх рядків та стовпців співпадають з вхідними. Такий вид обробки найбільш прийнятний для тестових прикладів, хоча в реальних системах використовуються методи копіювання сусідів, або інші, складніші алгоритми доповнення.

Алгоритм 1. Прямий.

1. Перший і останній рядки (верхня і нижня границі зображення)

 for (p = 0;  p < M;  p++)

 for (q = 0; q < Q; q++)

  {    g[p, q]=x[p, q];    g[P-1-p, q]=x[P-1-p, q]};

2. Решта рядків

for (p = M; p < P - M; p++)

{

2.1. Перші і останні M елементів рядка (ліва і права границі зображення)

 for (q=0; q < M; q++ )

  { g[p, q]=x[p, q];    g[p, Q-1-q]=x[p,Q-1-q]  };

2.2. Решта елементів (основне перетворення)

for (q=M; q < Q - M; q++ )

  { Sum=0.0;

for (i = - M; i < = M; i++ )

for (j = -M;  j < = M;  j++ )

Sum = Sum +h [i,j] * x[i+p,j+q];

  g[p,q] = Sum;

  }  }

Алгоритм 2. Прямий, з мінімізацією необхідної пам’яті.

1. Ініціалізація додаткавої матриці xtemp[p, q] , розміру ( M+1) x Q

 for (p = 0;  p <= M;  p++)

 for (q = 0; q < Q; q++)  

 xtemp[p, q]=x[p, q];

2. Фільтрація

for (p = M; p < P - M; p++)

{for (q=M; q < Q - M; q++ )

  { Sum=0.0;

for (j = -M;  j < = M;  j++ )

{for (i = 1; i < = M; i++ )

Sum = Sum +h [i,j] * x[i+p,j+q];

for (i = -M;  i < 1;  i++ )

Sum = Sum +h[i,j] * xtemp[i+M,j+q];

   }

  g[p,q] = Sum;

  }

Модифікація матриці xtemp

for (i = 1; q < M; q++)  

  for (q = 0; q < Q; q++)  

xtemp[i-1, q]= xtemp[i, q];

for (q = 0; q < Q; q++)  

xtemp[M, q]= x[p+1, q];  }

Завдання

Виконати фільтрацію вхідного зображення та зробити висновок про властивості фільтра із заданою імпульсною характеристикою.

 Варіант

Імпульсна характеристика фільтру

5

h=[-1 -1 -1;-1 9 -1;-1 -1 -1]

Виконання:

Для розв’язання поставленого завдання, обираємо перший алгоритм лінійної фільтрації, оскільки він є найбільш простим для реалізації і створюємо програму в середовищі MatLab. При цьому вхідне зображення подається у стандартному двійковому форматі (.raw), який опрацьовується стандартними засобами обраного пакету. В даному випадку тестовим є типове в практиці цифрової обробки сигналів, чорно-біле зображення “Lenna”, розмір якого 256 на 256 пікселів.

Фільтрація виконується за граф-схемою, яка наведена на рис. 1. Повний текст програми, що реалізовує дану граф-схему обробки наведений в Додатку.

Для того, щоб утворити вхідну матрицю, розроблено власну підпрограму <readim.m>, що дозволяє зчитати зображення у форматі .raw, переконатися у коректності відкриття/існування файлу, та присвоїти відповідні значення елементам матриці.

Результатом роботи створеного програмного засобу є матриця, що містить елементи фільтрованого зображення. За допомогою розробленої підпрограми графічного виводу <autoimage.m>, ця матриця відображається як чорно-біле зображення, розміром 256 на 256 пікселів.

Блок-схема 1. Алгоритм лінійної фільтрації зображення.

Малюнок 1. Виконання програми.

Малюнок 2. Зображення, отримане в результаті застосування фільтру

<filtr.m>

clc

clear all

close all

echo off

x = readim('Hlynka.raw',[256,256]);

subplot(111); title('in');

autoimage(x);

P=256;

Q=256;

h=[-1 -1 -1;-1 -9 -1;-1 -1-1]; % задання імпульсної характеристики фільтру

M=length(h);

%1. Перший і останній рядки (верхня і нижня границі зображення)

 for p=1:1:M

   for q=1:1:Q

       g(p, q)=x(p, q);    

       g(P-p, q)=x(P-p, q) ;

   end;

 end;

%2. Решта рядків

   for p=M:1: P - M;

%2.1. Перші і останні M елементів рядка (ліва і права границі зображення)

       for q=1:1:M

           g(p, q)=x(p, q);    

           g(p, Q-q)=x(p,Q-q);

       end;

% 2.2. Решта елементів (основне перетворення)

       for q=M:1: Q - M

            SUM=0.0;

           for  ii =1:1: M;

             for  jj = 1:1: M;

               SUM = SUM +h ( ii,jj) * x( (ii-round(M/2))+p,(jj-round(M/2))+q);

             end;  

           end;

           g(p,q) = SUM;

       end

   end

figure(2) subplot(111); title('out');

autoimage(g);

 

<readim.m>

function Image = readim(filename,par)

       fid = fopen(filename,'r');

          if fid < 0,

           disp('Error reading.');

       else

           Image = fread(fid,par);

           fclose(fid);

       end

   end

<autoimage.m>

function autoimage(img)

    mmin = min(min(img));

   mmax = max(max(img));

    image(256*(img-mmin)/(mmax-mmin))

    axis('image')

   colormap(gray(256))

Висновок: Після виконання даної лабораторної роботи вдалося проілюструвати процес фільтрації зображення в просторовій області. А також познайомитися з методами та засобами фільтрації зображення.


 

А также другие работы, которые могут Вас заинтересовать

26332. Испанское Возрождение 38.32 KB
  Вот почему даже такие передовые люди Испании как Сервантес и Лопе де Вега не порывают до конца с католической традицией. К этому направлению принадлежал крупнейший поэт раннего испанского Возрождения Гарсиласо де ла Вега 1503 1536. пасторальный мотив введённый в испанскую литературу Гарсиласо де ла Вега также получил развитие в форме романа. Общественное содержание испанской драмы от Лопе де Вега до Кальдер она составляет полная напряжённого драматизма борьба абсолютной монархии с вольностями старой Испании добытыми испанским...
26333. Северное Возрождение 27.83 KB
  Актуальность этой темы определяется огромной ролью которую Возрождение сыграло в формировании современной западной культуры. Название Нидерланды Нижние земли получил в средние века комплекс территорий расположенных в низовьях Рейна по побережью Северного моря и вдоль рек Шельды и Мааса. После отречения Карла V от престола страна в составе 17 провинций была унаследована в 1556 г. Распространение Реформации в том числе кальвинистской вызвало в Нидерландах при Филиппе II воинствующем католике особенно жестокие преследования...
26334. Английское Возрождение 38.59 KB
  Культура Возрождения с её идейной основой философией и эстетикой гуманизма возникает прежде всего на итальянской почве. Неудивительно что влияние Италии можно заметить у всех английских писателей эпохи Возрождения. Широкий народный фон английского Возрождения его основное достоинство источник таких достижений XVI столетия как Утопия Томаса Мора и театр Шекспира. Вслед за официальной реформацией поднимается новая волна религиозного фанатизма движение пуритан враждебных жизнерадостному светскому духу Возрождения гуманистической...
26335. Исторические предпосылки и характерные черты эпохи Просвещения 18.1 KB
  Исторические предпосылки и характерные черты эпохи Просвещения. Исторические предпосылки: Характерные черты эпохи Просвещения: 18 век важный этап в эволюции западноевропейской культуры. Идеология Просвещения возникла в 17 веке ее родоначальником считается английский философ Д. Представители Просвещения в своих политических философских культурологических взглядах отстаивали могущество разума и свет знаний которые должны победить тьму невежества заблуждений и предрассудков.
26336. Развитие естественнонаучной мысли эпохи Просвещения 12.77 KB
  Развитие естественнонаучной мысли эпохи Просвещения. В истории философской мысли 18 век обычно характеризуется как век Просвещения. Оптимизм Просвещения выражает менталитет крепнувшей буржуазии не случайно родиной Просвещения стала Англия раньше других стран вставшая на путь капиталистического развития. Развитие Просвещения в философии тесно связано с социальнополитическими идеями становлением идеологии.
26337. Английское Просвещение 33.19 KB
  Для просветителей же XVIII в. Философия Основоположник свободомыслия XVIII в. В течение всего XVIII в. Признание ощущения источником нашей мысли великая идея получившая дальнейшее развитие в материализме XVIII в.
26338. Французское Просвещение 48.01 KB
  Жан Жак Руссо Новым этапом в развитии французского Просвещения XVIII в. была деятельность Жан Жака Руссо 1712 1778 идеолога революционной мелкой буржуазии. значительное влияние на якобинцев провозгласивших Руссо своим идейным предшественником. Пройдя суровую жизненную школу Руссо с детства видел страдания народа.
26339. Американское Просвещение 40.96 KB
  Крупнейшие представители американского Просвещения: Франклин Джефферсон Пэйн и другие являются вместе с тем активными революционными деятелями руководящими фигурами в современной им политической борьбе. Представителями радикального якобинского крыла в американском деизме были Томас Пэйн и Этан Аллен. Близкий к взглядам Аллена круг идей но в более развернутом виде содержит вышедшая десять лет спустя книга Пэйна Age of reason Век разума. Томас Пэйн 1737 1809 гг.
26340. Германское Просвещение 14.68 KB
  Предметом теоретической философии по Канту должно быть не изучение самих по себе вещей природы мира человека а исследование деятельности установление законов человеческого разума и его границ. он написал тезисы Воспитание человеческого рода главная идея которых единство человеческого рода его всеохватной целостности. Но высокая оценка христианской святости по его мнению не означала что духовная эволюция человеческого рода завершается именно этой религией. Таким образом Немецкое Просвещение рассматривало движение человека к...