17520

Фільтрація сигналів і зображень

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №4 На тему: Фільтрація сигналів і зображень Мета роботи Ознайомитися з методами та засобами фільтрації сигналів та зображень. Проілюструвати процес фільтрації зображення в просторовій області. Теоретичні відомості Цифрова фільтрація д

Украинкский

2013-07-01

256.5 KB

48 чел.

Лабораторна робота №4

На тему: «Фільтрація сигналів і зображень»

Мета роботи

Ознайомитися з методами та засобами фільтрації сигналів та зображень. Проілюструвати процес фільтрації зображення в просторовій області.

Теоретичні відомості

Цифрова фільтрація даних (сигналів) є одною з основних і найпоширеніших задач цифрової обробки інформації. Під фільтрацією будемо розуміти будь-яке перетворення інформації, в нашому випадку - сигналів, при якому у вхідній послідовності оброблюваних даних цілеспрямовано змінюються певні співвідношення (динамічні або частотні) між різними компонентами цих даних. До основних операцій фільтрації інформації відносять: згладжування; прогнозування; диференціювання; інтегрування; поділ на певні складові; виділення інформаційних (корисних) сигналів; придушення шумів (завад).

У загальному випадку терміном цифровий фільтр (ЦФ) називають апаратну або програмну реалізацію математичного алгоритму, входом якого є цифровий сигнал, а виходом – інший цифровий сигнал з певним чином модифікованою формою і/або амплітудною і фазовою характеристикою. Класифікація цифрових фільтрів звичайно базується на функціональних ознаках алгоритмів цифрової фільтрації, відповідно до якого ЦФ підрозділяються на 4 групи:

  •  фільтри частотної селекції;
  •  оптимальні (квазіоптимальні);
  •  адаптивні;

евристичні.

Відомі методи цифрової обробки даних, які є методами цифрової фільтрації такі як метод згладжування відліків у ковзаючому вікні постійної довжини. Наприклад для лінійного згладжування даних за п’ятьма точками з однаковими ваговими коефіцієнтами використовується формула:

yk = 0.2(xk-2+xk-1+xk+xk+1+xk+2).

З точки зору цифрової фільтрації це двосторонній симетричний нерекурсивний фільтр:

yk =bn xk-n,     bn = 0,2.

Фільтрація зображень в часовій (просторовій) області

В часовій і просторовій області процес фільтрації сигналів описується рівнянням одновимірної згортки:

,

де:  - вихідний сигнал;

 вхідний сигнал;

 імпульсна характеристика фільтру.

Фільтрація  зображень в часовій області зводиться до двовимірної лінійної згортки:

,

де:  - вхідне зображення;

- фільтроване зображення;

- імпульсна характеристика фільтру (маска, що визначає вид фільтрації);

- розмір зображення,  ;

- розмір вікна фільтрації (апертури);

, .

Очевидно, що процес фільтрації – це послідовне обчислення згортки обраної маски з «вікном» (частиною) зображення. Елементи вікна, розташовані в області точки для якої обчислюється згортка. Таким чином, маска фільтру, її ще називають апертурою, «пробігає» всі елементи зображення, утворюючи вихідне зображення.

Маски для низькочастотної та високочастотної фільтрації визначають тип фільтрації. Низькочастотна фільтрація забезпечує згладжування шуму, тобто усунення високочастотних складових. Вона досягається за рахунок використання масок з додатними елементами. Прикладом таких масок можуть бути наступні масиви, що мають розмір  точки. Зауважимо, що для того, щоб процедура пригашення шуму не приводила до зміщення середньої яскравості зображення ці масиви є нормованими.

; ; .

Для високочастотної фільтрації можна навести такі маски:

;   ;  

Особливістю таких апертур є те, що алгебраїчно сума елементів кожної з них дорівнює одиниці. Використання високочастотних масок приводить до виділення границь об’єктів, тому може бути використана, наприклад, маска Роберта, різницевий оператор Собеля, Кірша.

Широке поширення набули методи контрастування (один з випадків високочастотної - фільтрації), в яких використовується оператор Лапласа. На практиці він заміняється згорткою зображення з однією з масок:

;  ;  .

Алгоритми лінійної фільтрації

Виконувати лінійну фільтрацію двовимірних масивів (зображень) можна звикористанням алгоритмів, що приводяться нижче. Перший з них реалізовує процес безпосередньо за формулою згортки, а другий – зменшує необхідний об’єм пам’яті, що може суттєво впливати на швидкість обробки при великих розмірах вхідного зображення.

В обох із запропонованих алгоритмів, границі зображень обробляються без фільтрації, тобто у вихідній матриці елементи крайніх рядків та стовпців співпадають з вхідними. Такий вид обробки найбільш прийнятний для тестових прикладів, хоча в реальних системах використовуються методи копіювання сусідів, або інші, складніші алгоритми доповнення.

Алгоритм 1. Прямий.

1. Перший і останній рядки (верхня і нижня границі зображення)

 for (p = 0;  p < M;  p++)

 for (q = 0; q < Q; q++)

  {    g[p, q]=x[p, q];    g[P-1-p, q]=x[P-1-p, q]};

2. Решта рядків

for (p = M; p < P - M; p++)

{

2.1. Перші і останні M елементів рядка (ліва і права границі зображення)

 for (q=0; q < M; q++ )

  { g[p, q]=x[p, q];    g[p, Q-1-q]=x[p,Q-1-q]  };

2.2. Решта елементів (основне перетворення)

for (q=M; q < Q - M; q++ )

  { Sum=0.0;

for (i = - M; i < = M; i++ )

for (j = -M;  j < = M;  j++ )

Sum = Sum +h [i,j] * x[i+p,j+q];

  g[p,q] = Sum;

  }  }

Алгоритм 2. Прямий, з мінімізацією необхідної пам’яті.

1. Ініціалізація додаткавої матриці xtemp[p, q] , розміру ( M+1) x Q

 for (p = 0;  p <= M;  p++)

 for (q = 0; q < Q; q++)  

 xtemp[p, q]=x[p, q];

2. Фільтрація

for (p = M; p < P - M; p++)

{for (q=M; q < Q - M; q++ )

  { Sum=0.0;

for (j = -M;  j < = M;  j++ )

{for (i = 1; i < = M; i++ )

Sum = Sum +h [i,j] * x[i+p,j+q];

for (i = -M;  i < 1;  i++ )

Sum = Sum +h[i,j] * xtemp[i+M,j+q];

   }

  g[p,q] = Sum;

  }

Модифікація матриці xtemp

for (i = 1; q < M; q++)  

  for (q = 0; q < Q; q++)  

xtemp[i-1, q]= xtemp[i, q];

for (q = 0; q < Q; q++)  

xtemp[M, q]= x[p+1, q];  }

Завдання

Виконати фільтрацію вхідного зображення та зробити висновок про властивості фільтра із заданою імпульсною характеристикою.

 Варіант

Імпульсна характеристика фільтру

5

h=[-1 -1 -1;-1 9 -1;-1 -1 -1]

Виконання:

Для розв’язання поставленого завдання, обираємо перший алгоритм лінійної фільтрації, оскільки він є найбільш простим для реалізації і створюємо програму в середовищі MatLab. При цьому вхідне зображення подається у стандартному двійковому форматі (.raw), який опрацьовується стандартними засобами обраного пакету. В даному випадку тестовим є типове в практиці цифрової обробки сигналів, чорно-біле зображення “Lenna”, розмір якого 256 на 256 пікселів.

Фільтрація виконується за граф-схемою, яка наведена на рис. 1. Повний текст програми, що реалізовує дану граф-схему обробки наведений в Додатку.

Для того, щоб утворити вхідну матрицю, розроблено власну підпрограму <readim.m>, що дозволяє зчитати зображення у форматі .raw, переконатися у коректності відкриття/існування файлу, та присвоїти відповідні значення елементам матриці.

Результатом роботи створеного програмного засобу є матриця, що містить елементи фільтрованого зображення. За допомогою розробленої підпрограми графічного виводу <autoimage.m>, ця матриця відображається як чорно-біле зображення, розміром 256 на 256 пікселів.

Блок-схема 1. Алгоритм лінійної фільтрації зображення.

Малюнок 1. Виконання програми.

Малюнок 2. Зображення, отримане в результаті застосування фільтру

<filtr.m>

clc

clear all

close all

echo off

x = readim('Hlynka.raw',[256,256]);

subplot(111); title('in');

autoimage(x);

P=256;

Q=256;

h=[-1 -1 -1;-1 -9 -1;-1 -1-1]; % задання імпульсної характеристики фільтру

M=length(h);

%1. Перший і останній рядки (верхня і нижня границі зображення)

 for p=1:1:M

   for q=1:1:Q

       g(p, q)=x(p, q);    

       g(P-p, q)=x(P-p, q) ;

   end;

 end;

%2. Решта рядків

   for p=M:1: P - M;

%2.1. Перші і останні M елементів рядка (ліва і права границі зображення)

       for q=1:1:M

           g(p, q)=x(p, q);    

           g(p, Q-q)=x(p,Q-q);

       end;

% 2.2. Решта елементів (основне перетворення)

       for q=M:1: Q - M

            SUM=0.0;

           for  ii =1:1: M;

             for  jj = 1:1: M;

               SUM = SUM +h ( ii,jj) * x( (ii-round(M/2))+p,(jj-round(M/2))+q);

             end;  

           end;

           g(p,q) = SUM;

       end

   end

figure(2) subplot(111); title('out');

autoimage(g);

 

<readim.m>

function Image = readim(filename,par)

       fid = fopen(filename,'r');

          if fid < 0,

           disp('Error reading.');

       else

           Image = fread(fid,par);

           fclose(fid);

       end

   end

<autoimage.m>

function autoimage(img)

    mmin = min(min(img));

   mmax = max(max(img));

    image(256*(img-mmin)/(mmax-mmin))

    axis('image')

   colormap(gray(256))

Висновок: Після виконання даної лабораторної роботи вдалося проілюструвати процес фільтрації зображення в просторовій області. А також познайомитися з методами та засобами фільтрації зображення.


 

А также другие работы, которые могут Вас заинтересовать

39175. Мектептерде музыка пәні арқылы халықтың тәрбие берудің мән-мағынасы 463.5 KB
  3 Музыка мен әдебиеттің байланысы 2 Тәжірибелік жұмыстағы әдістер 2.1 Музыкалық тәрбие берудің маңызы мен міндеттері 2.1 Музыкалық білім мен тәрбие берудің қалыптасуы мен дамуы 3.2 Музыка мектебінде білім мен тәрбие беру 3.
39176. РАЗРАБОТКА ОПТИМАЛЬНОГО ВАРИАНТА ОРГАНИЗАЦИИ ДОСТАВКИ КОНТЕЙНЕРНЫХ ГРУЗОВ ООО «СИСТОКСЕВИС» 7.52 MB
  Виды доставок и технологические схемы перевозки Особенности транспортно-логистических систем различных видов транспорта и их взаимодействие Логистическая информация как стратегический ресурс транспортного потока. Транспортные компании ищут пути повышения доходов от своей деятельности что особенно актуально в условиях острой конкуренции на транспортном рынке и не...
39177. Разработка автоматизированной системы планирования закупок 2.59 MB
  Подсистема сбыта позволяет работать с потребителями позволяет учитывать продажи товаров. При этом многообразие его параметров технологических и объемнопланировочных решений конструкций оборудования и характеристик перерабатываемой номенклатуры товаров относит склад к сложным системам. Технологический процесс на складах основу которого составляют материальные потоки должен отвечать оптимальным параметрам по скорости процесса обеспечивать сохранность товаров и экономичность затрат. Нормативная оборачиваемость товаров зависит от задач...
39178. ТЕОРІЯ ПРОГРАМНИХ АЛГЕБР КОМПОЗИЦІЙНОГО ТИПУ ТА ЇЇ ЗАСТОСУВАННЯ 3.84 MB
  Перераховані стилі виділяють певний (звичайно, дуже важливий, але один з багатьох) аспект та уточнюють саме його. Так, у структурному програмуванні це каталогізація методів побудови програм, у функціональному – опис програм системами функціональних рівнянь, у логічному – визначення програм специфікаціями певних формальних мов, як правило, першого порядку, в об‘єктно-орієнтованому (модульному) – трактування розмаїтості даних
39179. ФОРМИРОВАНИЕ ИНФОРМАЦИОННОЙ КОМПЕТЕНТНОСТИ ПЕДАГОГА В СИСТЕМЕ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ 1.06 MB
  Другой проблемой на сегодняшний день является тот факт, что большинство педагогов российских школ сами имеют достаточно низкий уровень информационной компетентности. Особенно эта проблема актуальна для сельских школ и тех мест, где внедрение современных телекоммуникационных и информационных технологий только началось. Нередки ситуации, когда в школе уже появилась современная вычислительная техника, но используются она только в качестве печатной машинки с расширенными возможностями, так как учителя не обладают достаточными навыками и умениями для того, чтобы использовать эту технику в образовательном процессе.
39181. Проблемы и перспективы привлечения банковских ресурсов в условиях посткризисного развития экономики Республики Казахстан 1.21 MB
  1 Экономическое содержание банковских ресурсов1.2 Собственный капитал и его роль в формировании банковских ресурсов1.3 Формы привлечения ресурсов банками их модификация в условиях усиления конкуренции на финансовом рынке2 Анализ формирования ресурсов банков второго уровня Республики Казахстан в условиях современного мирового финансового кризиса 2.
39183. Агроекологія 542.5 KB
  Назвати основні типи ерозії, дати оцінку шкідливості ерозійних процесів, та способи запобігання ерозії, які придатні для землеробства України