17520

Фільтрація сигналів і зображень

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №4 На тему: Фільтрація сигналів і зображень Мета роботи Ознайомитися з методами та засобами фільтрації сигналів та зображень. Проілюструвати процес фільтрації зображення в просторовій області. Теоретичні відомості Цифрова фільтрація д

Украинкский

2013-07-01

256.5 KB

43 чел.

Лабораторна робота №4

На тему: «Фільтрація сигналів і зображень»

Мета роботи

Ознайомитися з методами та засобами фільтрації сигналів та зображень. Проілюструвати процес фільтрації зображення в просторовій області.

Теоретичні відомості

Цифрова фільтрація даних (сигналів) є одною з основних і найпоширеніших задач цифрової обробки інформації. Під фільтрацією будемо розуміти будь-яке перетворення інформації, в нашому випадку - сигналів, при якому у вхідній послідовності оброблюваних даних цілеспрямовано змінюються певні співвідношення (динамічні або частотні) між різними компонентами цих даних. До основних операцій фільтрації інформації відносять: згладжування; прогнозування; диференціювання; інтегрування; поділ на певні складові; виділення інформаційних (корисних) сигналів; придушення шумів (завад).

У загальному випадку терміном цифровий фільтр (ЦФ) називають апаратну або програмну реалізацію математичного алгоритму, входом якого є цифровий сигнал, а виходом – інший цифровий сигнал з певним чином модифікованою формою і/або амплітудною і фазовою характеристикою. Класифікація цифрових фільтрів звичайно базується на функціональних ознаках алгоритмів цифрової фільтрації, відповідно до якого ЦФ підрозділяються на 4 групи:

  •  фільтри частотної селекції;
  •  оптимальні (квазіоптимальні);
  •  адаптивні;

евристичні.

Відомі методи цифрової обробки даних, які є методами цифрової фільтрації такі як метод згладжування відліків у ковзаючому вікні постійної довжини. Наприклад для лінійного згладжування даних за п’ятьма точками з однаковими ваговими коефіцієнтами використовується формула:

yk = 0.2(xk-2+xk-1+xk+xk+1+xk+2).

З точки зору цифрової фільтрації це двосторонній симетричний нерекурсивний фільтр:

yk =bn xk-n,     bn = 0,2.

Фільтрація зображень в часовій (просторовій) області

В часовій і просторовій області процес фільтрації сигналів описується рівнянням одновимірної згортки:

,

де:  - вихідний сигнал;

 вхідний сигнал;

 імпульсна характеристика фільтру.

Фільтрація  зображень в часовій області зводиться до двовимірної лінійної згортки:

,

де:  - вхідне зображення;

- фільтроване зображення;

- імпульсна характеристика фільтру (маска, що визначає вид фільтрації);

- розмір зображення,  ;

- розмір вікна фільтрації (апертури);

, .

Очевидно, що процес фільтрації – це послідовне обчислення згортки обраної маски з «вікном» (частиною) зображення. Елементи вікна, розташовані в області точки для якої обчислюється згортка. Таким чином, маска фільтру, її ще називають апертурою, «пробігає» всі елементи зображення, утворюючи вихідне зображення.

Маски для низькочастотної та високочастотної фільтрації визначають тип фільтрації. Низькочастотна фільтрація забезпечує згладжування шуму, тобто усунення високочастотних складових. Вона досягається за рахунок використання масок з додатними елементами. Прикладом таких масок можуть бути наступні масиви, що мають розмір  точки. Зауважимо, що для того, щоб процедура пригашення шуму не приводила до зміщення середньої яскравості зображення ці масиви є нормованими.

; ; .

Для високочастотної фільтрації можна навести такі маски:

;   ;  

Особливістю таких апертур є те, що алгебраїчно сума елементів кожної з них дорівнює одиниці. Використання високочастотних масок приводить до виділення границь об’єктів, тому може бути використана, наприклад, маска Роберта, різницевий оператор Собеля, Кірша.

Широке поширення набули методи контрастування (один з випадків високочастотної - фільтрації), в яких використовується оператор Лапласа. На практиці він заміняється згорткою зображення з однією з масок:

;  ;  .

Алгоритми лінійної фільтрації

Виконувати лінійну фільтрацію двовимірних масивів (зображень) можна звикористанням алгоритмів, що приводяться нижче. Перший з них реалізовує процес безпосередньо за формулою згортки, а другий – зменшує необхідний об’єм пам’яті, що може суттєво впливати на швидкість обробки при великих розмірах вхідного зображення.

В обох із запропонованих алгоритмів, границі зображень обробляються без фільтрації, тобто у вихідній матриці елементи крайніх рядків та стовпців співпадають з вхідними. Такий вид обробки найбільш прийнятний для тестових прикладів, хоча в реальних системах використовуються методи копіювання сусідів, або інші, складніші алгоритми доповнення.

Алгоритм 1. Прямий.

1. Перший і останній рядки (верхня і нижня границі зображення)

 for (p = 0;  p < M;  p++)

 for (q = 0; q < Q; q++)

  {    g[p, q]=x[p, q];    g[P-1-p, q]=x[P-1-p, q]};

2. Решта рядків

for (p = M; p < P - M; p++)

{

2.1. Перші і останні M елементів рядка (ліва і права границі зображення)

 for (q=0; q < M; q++ )

  { g[p, q]=x[p, q];    g[p, Q-1-q]=x[p,Q-1-q]  };

2.2. Решта елементів (основне перетворення)

for (q=M; q < Q - M; q++ )

  { Sum=0.0;

for (i = - M; i < = M; i++ )

for (j = -M;  j < = M;  j++ )

Sum = Sum +h [i,j] * x[i+p,j+q];

  g[p,q] = Sum;

  }  }

Алгоритм 2. Прямий, з мінімізацією необхідної пам’яті.

1. Ініціалізація додаткавої матриці xtemp[p, q] , розміру ( M+1) x Q

 for (p = 0;  p <= M;  p++)

 for (q = 0; q < Q; q++)  

 xtemp[p, q]=x[p, q];

2. Фільтрація

for (p = M; p < P - M; p++)

{for (q=M; q < Q - M; q++ )

  { Sum=0.0;

for (j = -M;  j < = M;  j++ )

{for (i = 1; i < = M; i++ )

Sum = Sum +h [i,j] * x[i+p,j+q];

for (i = -M;  i < 1;  i++ )

Sum = Sum +h[i,j] * xtemp[i+M,j+q];

   }

  g[p,q] = Sum;

  }

Модифікація матриці xtemp

for (i = 1; q < M; q++)  

  for (q = 0; q < Q; q++)  

xtemp[i-1, q]= xtemp[i, q];

for (q = 0; q < Q; q++)  

xtemp[M, q]= x[p+1, q];  }

Завдання

Виконати фільтрацію вхідного зображення та зробити висновок про властивості фільтра із заданою імпульсною характеристикою.

 Варіант

Імпульсна характеристика фільтру

5

h=[-1 -1 -1;-1 9 -1;-1 -1 -1]

Виконання:

Для розв’язання поставленого завдання, обираємо перший алгоритм лінійної фільтрації, оскільки він є найбільш простим для реалізації і створюємо програму в середовищі MatLab. При цьому вхідне зображення подається у стандартному двійковому форматі (.raw), який опрацьовується стандартними засобами обраного пакету. В даному випадку тестовим є типове в практиці цифрової обробки сигналів, чорно-біле зображення “Lenna”, розмір якого 256 на 256 пікселів.

Фільтрація виконується за граф-схемою, яка наведена на рис. 1. Повний текст програми, що реалізовує дану граф-схему обробки наведений в Додатку.

Для того, щоб утворити вхідну матрицю, розроблено власну підпрограму <readim.m>, що дозволяє зчитати зображення у форматі .raw, переконатися у коректності відкриття/існування файлу, та присвоїти відповідні значення елементам матриці.

Результатом роботи створеного програмного засобу є матриця, що містить елементи фільтрованого зображення. За допомогою розробленої підпрограми графічного виводу <autoimage.m>, ця матриця відображається як чорно-біле зображення, розміром 256 на 256 пікселів.

Блок-схема 1. Алгоритм лінійної фільтрації зображення.

Малюнок 1. Виконання програми.

Малюнок 2. Зображення, отримане в результаті застосування фільтру

<filtr.m>

clc

clear all

close all

echo off

x = readim('Hlynka.raw',[256,256]);

subplot(111); title('in');

autoimage(x);

P=256;

Q=256;

h=[-1 -1 -1;-1 -9 -1;-1 -1-1]; % задання імпульсної характеристики фільтру

M=length(h);

%1. Перший і останній рядки (верхня і нижня границі зображення)

 for p=1:1:M

   for q=1:1:Q

       g(p, q)=x(p, q);    

       g(P-p, q)=x(P-p, q) ;

   end;

 end;

%2. Решта рядків

   for p=M:1: P - M;

%2.1. Перші і останні M елементів рядка (ліва і права границі зображення)

       for q=1:1:M

           g(p, q)=x(p, q);    

           g(p, Q-q)=x(p,Q-q);

       end;

% 2.2. Решта елементів (основне перетворення)

       for q=M:1: Q - M

            SUM=0.0;

           for  ii =1:1: M;

             for  jj = 1:1: M;

               SUM = SUM +h ( ii,jj) * x( (ii-round(M/2))+p,(jj-round(M/2))+q);

             end;  

           end;

           g(p,q) = SUM;

       end

   end

figure(2) subplot(111); title('out');

autoimage(g);

 

<readim.m>

function Image = readim(filename,par)

       fid = fopen(filename,'r');

          if fid < 0,

           disp('Error reading.');

       else

           Image = fread(fid,par);

           fclose(fid);

       end

   end

<autoimage.m>

function autoimage(img)

    mmin = min(min(img));

   mmax = max(max(img));

    image(256*(img-mmin)/(mmax-mmin))

    axis('image')

   colormap(gray(256))

Висновок: Після виконання даної лабораторної роботи вдалося проілюструвати процес фільтрації зображення в просторовій області. А також познайомитися з методами та засобами фільтрації зображення.


 

А также другие работы, которые могут Вас заинтересовать

76410. Построение переходной функции по ВЧХ замкнутой системы 297.32 KB
  Характеристику построенную в натуральном масштабе по оси частот аппроксимируем стандартными характеристиками :тогда очевидно чтогде616В настоящее время чаще всего используют в качестве стандартных характеристик трапеции рис. 68 при этом интеграл 616 может быть вычислен в видеРис 68617где параметр трапеции характеризующий ее форму см. рис. Рассмотрим построение переходной функции САР если ее ВЧХ имеет вид показанный на рис.
76411. Определение величины перерегулирования по ВЧХ 17.81 KB
  Приближенное значение величины перерегулирования можно определить по виду графиков ВЧХ -если ВЧХ монотонно убывающая, то = О, -если ВЧХ не возрастающая, то максимальное значение перерегулирования если ВЧХ возрастающая, то максимальное значение перерегулирования ...
76412. Алгоритм построения логарифмической амплитудной характеристики последовательного соединения типовых звеньев 59.87 KB
  Построение асимптотической ЛАХ последовательного соединения типовых звеньев сводится к суммированию на графике отрезков прямых линий с наклонами кратными 20 дБ дек. Используем более эффективный способ построения ЛАХ последовательного соединения звеньев который не требует построения ЛАХ отдельно каждого звена и последующего суммирования этих ЛАХ. Очевидно что результирующая ЛАХ от такого перераспределения параметров должна остаться без изменений. Построим ЛАХ звеньевсомножителей из 4.
76413. Признаки переходного и установившегося режимов работы САР 49.49 KB
  Признаки переходного и установившегося режимов работы САР Можно ли изучая выходной сигнал САР определить работает она на данном отрезке времени в переходном или установившемся режиме Для этого нужно более точно сформулировать что такое переходный и что такое установившийся режимы с практической точки зрения. Красная кривая переходный процесс при идеальном ступенчатом воздействии. Нарастание воздействия со скоростью примерно 8 ед сек сопровождается заметным переходным процессом голубая линия при скорости 4 ед сек переходный процесс...
76415. Преобразование Лапласа и его свойства 89.59 KB
  Различают прямое и обратное преобразование Лапласа. Прямое преобразование Лапласа определяется уравнением. Обратное преобразование Лапласа определяют из решения.
76416. Частотные характеристики САУ 83.42 KB
  Если на вход подавать синусоидальные колебания 1 то на выходе после затухания переходных процессов этим заниматься не будем также возникают синусоидальные гармонические колебания с той же частотой но с другой амплитудой и сдвинутые по фазе относительно входных колебаний: где φ – сдвиг по фазе выходных колебаний относительно входных.угол – φ Зависимость модуля АФЧХ от частоты колебаний ω называется амплитудно-частотной характеристикой. Зависимость сдвига фаз входных и выходных колебаний φ от частоты ω называется фазочастотной...
76417. Дифференциальные уравнения и передаточные функции 38.88 KB
  Введем понятие звена автоматической системы. При математическом описании системы удобно разбить систему на звенья и для каждого звена записать свое уравнение. Уравнение такого звена связывает две величины: x входная величина или воздействие и y выходная величина или реакция. Пусть момент времени t=0 выбран так что начальные условия на выходе звена являются нулевыми.
76418. Типовые сигналы 139.87 KB
  Дельтафункция является четной функцией между функцией Хэвисайда и Дирака существует связь выраженная соотношением: или На практике считается что на вход объекта подана функция функция если время действия прямоугольно го импульса намного меньше времени переходного процесса. Сдвинутые элементарные функции К этим функциям относятся функции Хевисайда и Дирака с запаздыванием т. и Рисунок 4 при этом Все...