17520

Фільтрація сигналів і зображень

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №4 На тему: Фільтрація сигналів і зображень Мета роботи Ознайомитися з методами та засобами фільтрації сигналів та зображень. Проілюструвати процес фільтрації зображення в просторовій області. Теоретичні відомості Цифрова фільтрація д

Украинкский

2013-07-01

256.5 KB

50 чел.

Лабораторна робота №4

На тему: «Фільтрація сигналів і зображень»

Мета роботи

Ознайомитися з методами та засобами фільтрації сигналів та зображень. Проілюструвати процес фільтрації зображення в просторовій області.

Теоретичні відомості

Цифрова фільтрація даних (сигналів) є одною з основних і найпоширеніших задач цифрової обробки інформації. Під фільтрацією будемо розуміти будь-яке перетворення інформації, в нашому випадку - сигналів, при якому у вхідній послідовності оброблюваних даних цілеспрямовано змінюються певні співвідношення (динамічні або частотні) між різними компонентами цих даних. До основних операцій фільтрації інформації відносять: згладжування; прогнозування; диференціювання; інтегрування; поділ на певні складові; виділення інформаційних (корисних) сигналів; придушення шумів (завад).

У загальному випадку терміном цифровий фільтр (ЦФ) називають апаратну або програмну реалізацію математичного алгоритму, входом якого є цифровий сигнал, а виходом – інший цифровий сигнал з певним чином модифікованою формою і/або амплітудною і фазовою характеристикою. Класифікація цифрових фільтрів звичайно базується на функціональних ознаках алгоритмів цифрової фільтрації, відповідно до якого ЦФ підрозділяються на 4 групи:

  •  фільтри частотної селекції;
  •  оптимальні (квазіоптимальні);
  •  адаптивні;

евристичні.

Відомі методи цифрової обробки даних, які є методами цифрової фільтрації такі як метод згладжування відліків у ковзаючому вікні постійної довжини. Наприклад для лінійного згладжування даних за п’ятьма точками з однаковими ваговими коефіцієнтами використовується формула:

yk = 0.2(xk-2+xk-1+xk+xk+1+xk+2).

З точки зору цифрової фільтрації це двосторонній симетричний нерекурсивний фільтр:

yk =bn xk-n,     bn = 0,2.

Фільтрація зображень в часовій (просторовій) області

В часовій і просторовій області процес фільтрації сигналів описується рівнянням одновимірної згортки:

,

де:  - вихідний сигнал;

 вхідний сигнал;

 імпульсна характеристика фільтру.

Фільтрація  зображень в часовій області зводиться до двовимірної лінійної згортки:

,

де:  - вхідне зображення;

- фільтроване зображення;

- імпульсна характеристика фільтру (маска, що визначає вид фільтрації);

- розмір зображення,  ;

- розмір вікна фільтрації (апертури);

, .

Очевидно, що процес фільтрації – це послідовне обчислення згортки обраної маски з «вікном» (частиною) зображення. Елементи вікна, розташовані в області точки для якої обчислюється згортка. Таким чином, маска фільтру, її ще називають апертурою, «пробігає» всі елементи зображення, утворюючи вихідне зображення.

Маски для низькочастотної та високочастотної фільтрації визначають тип фільтрації. Низькочастотна фільтрація забезпечує згладжування шуму, тобто усунення високочастотних складових. Вона досягається за рахунок використання масок з додатними елементами. Прикладом таких масок можуть бути наступні масиви, що мають розмір  точки. Зауважимо, що для того, щоб процедура пригашення шуму не приводила до зміщення середньої яскравості зображення ці масиви є нормованими.

; ; .

Для високочастотної фільтрації можна навести такі маски:

;   ;  

Особливістю таких апертур є те, що алгебраїчно сума елементів кожної з них дорівнює одиниці. Використання високочастотних масок приводить до виділення границь об’єктів, тому може бути використана, наприклад, маска Роберта, різницевий оператор Собеля, Кірша.

Широке поширення набули методи контрастування (один з випадків високочастотної - фільтрації), в яких використовується оператор Лапласа. На практиці він заміняється згорткою зображення з однією з масок:

;  ;  .

Алгоритми лінійної фільтрації

Виконувати лінійну фільтрацію двовимірних масивів (зображень) можна звикористанням алгоритмів, що приводяться нижче. Перший з них реалізовує процес безпосередньо за формулою згортки, а другий – зменшує необхідний об’єм пам’яті, що може суттєво впливати на швидкість обробки при великих розмірах вхідного зображення.

В обох із запропонованих алгоритмів, границі зображень обробляються без фільтрації, тобто у вихідній матриці елементи крайніх рядків та стовпців співпадають з вхідними. Такий вид обробки найбільш прийнятний для тестових прикладів, хоча в реальних системах використовуються методи копіювання сусідів, або інші, складніші алгоритми доповнення.

Алгоритм 1. Прямий.

1. Перший і останній рядки (верхня і нижня границі зображення)

 for (p = 0;  p < M;  p++)

 for (q = 0; q < Q; q++)

  {    g[p, q]=x[p, q];    g[P-1-p, q]=x[P-1-p, q]};

2. Решта рядків

for (p = M; p < P - M; p++)

{

2.1. Перші і останні M елементів рядка (ліва і права границі зображення)

 for (q=0; q < M; q++ )

  { g[p, q]=x[p, q];    g[p, Q-1-q]=x[p,Q-1-q]  };

2.2. Решта елементів (основне перетворення)

for (q=M; q < Q - M; q++ )

  { Sum=0.0;

for (i = - M; i < = M; i++ )

for (j = -M;  j < = M;  j++ )

Sum = Sum +h [i,j] * x[i+p,j+q];

  g[p,q] = Sum;

  }  }

Алгоритм 2. Прямий, з мінімізацією необхідної пам’яті.

1. Ініціалізація додаткавої матриці xtemp[p, q] , розміру ( M+1) x Q

 for (p = 0;  p <= M;  p++)

 for (q = 0; q < Q; q++)  

 xtemp[p, q]=x[p, q];

2. Фільтрація

for (p = M; p < P - M; p++)

{for (q=M; q < Q - M; q++ )

  { Sum=0.0;

for (j = -M;  j < = M;  j++ )

{for (i = 1; i < = M; i++ )

Sum = Sum +h [i,j] * x[i+p,j+q];

for (i = -M;  i < 1;  i++ )

Sum = Sum +h[i,j] * xtemp[i+M,j+q];

   }

  g[p,q] = Sum;

  }

Модифікація матриці xtemp

for (i = 1; q < M; q++)  

  for (q = 0; q < Q; q++)  

xtemp[i-1, q]= xtemp[i, q];

for (q = 0; q < Q; q++)  

xtemp[M, q]= x[p+1, q];  }

Завдання

Виконати фільтрацію вхідного зображення та зробити висновок про властивості фільтра із заданою імпульсною характеристикою.

 Варіант

Імпульсна характеристика фільтру

5

h=[-1 -1 -1;-1 9 -1;-1 -1 -1]

Виконання:

Для розв’язання поставленого завдання, обираємо перший алгоритм лінійної фільтрації, оскільки він є найбільш простим для реалізації і створюємо програму в середовищі MatLab. При цьому вхідне зображення подається у стандартному двійковому форматі (.raw), який опрацьовується стандартними засобами обраного пакету. В даному випадку тестовим є типове в практиці цифрової обробки сигналів, чорно-біле зображення “Lenna”, розмір якого 256 на 256 пікселів.

Фільтрація виконується за граф-схемою, яка наведена на рис. 1. Повний текст програми, що реалізовує дану граф-схему обробки наведений в Додатку.

Для того, щоб утворити вхідну матрицю, розроблено власну підпрограму <readim.m>, що дозволяє зчитати зображення у форматі .raw, переконатися у коректності відкриття/існування файлу, та присвоїти відповідні значення елементам матриці.

Результатом роботи створеного програмного засобу є матриця, що містить елементи фільтрованого зображення. За допомогою розробленої підпрограми графічного виводу <autoimage.m>, ця матриця відображається як чорно-біле зображення, розміром 256 на 256 пікселів.

Блок-схема 1. Алгоритм лінійної фільтрації зображення.

Малюнок 1. Виконання програми.

Малюнок 2. Зображення, отримане в результаті застосування фільтру

<filtr.m>

clc

clear all

close all

echo off

x = readim('Hlynka.raw',[256,256]);

subplot(111); title('in');

autoimage(x);

P=256;

Q=256;

h=[-1 -1 -1;-1 -9 -1;-1 -1-1]; % задання імпульсної характеристики фільтру

M=length(h);

%1. Перший і останній рядки (верхня і нижня границі зображення)

 for p=1:1:M

   for q=1:1:Q

       g(p, q)=x(p, q);    

       g(P-p, q)=x(P-p, q) ;

   end;

 end;

%2. Решта рядків

   for p=M:1: P - M;

%2.1. Перші і останні M елементів рядка (ліва і права границі зображення)

       for q=1:1:M

           g(p, q)=x(p, q);    

           g(p, Q-q)=x(p,Q-q);

       end;

% 2.2. Решта елементів (основне перетворення)

       for q=M:1: Q - M

            SUM=0.0;

           for  ii =1:1: M;

             for  jj = 1:1: M;

               SUM = SUM +h ( ii,jj) * x( (ii-round(M/2))+p,(jj-round(M/2))+q);

             end;  

           end;

           g(p,q) = SUM;

       end

   end

figure(2) subplot(111); title('out');

autoimage(g);

 

<readim.m>

function Image = readim(filename,par)

       fid = fopen(filename,'r');

          if fid < 0,

           disp('Error reading.');

       else

           Image = fread(fid,par);

           fclose(fid);

       end

   end

<autoimage.m>

function autoimage(img)

    mmin = min(min(img));

   mmax = max(max(img));

    image(256*(img-mmin)/(mmax-mmin))

    axis('image')

   colormap(gray(256))

Висновок: Після виконання даної лабораторної роботи вдалося проілюструвати процес фільтрації зображення в просторовій області. А також познайомитися з методами та засобами фільтрації зображення.


 

А также другие работы, которые могут Вас заинтересовать

78765. Конструювання радіоелектронного засобу 674.24 KB
  Коли на комутатор телефонної станції надходить виклик він повідомляє про вхідний дзвінок абонента шляхом подачі змінного струму на дроти що ведуть до викликається телефонному апарату. У режимі очікування коли трубка лежить на важелі спеціальний пристрій зване конденсатором...
78766. Правове регулювання електронної комерції в Україні. Національне законодавство та міжнародні стандарти 134.5 KB
  Матеріали дослідження можуть бути використані для розширення методологічної бази правових галузевих досліджень. Одержані результати можуть бути використані: у практиці правозастосування з метою подолання існуючих проблем та методичних рекомендацій; для проведення подальших теоретичних...
78767. Технологія перевезення вугілля морським транспортом 110.4 KB
  Метою даного дипломного проекту полягає у висвітленні наступних завдань: Ознайомитись з транспортною характеристикою вугілля; Встановити особливості перевезення вугілля морським транспортом; З’ясувати характеристику ринку вугілля.
78768. Створення форонтиспісу у програмі Photshop 2.36 MB
  З усіх видів криття брошур основним є криття врозпуск при якому на обкладинці роблять чотири рубчики і приклеюють її не тільки до корінця а й до першої сторінки блока. Комбіноване фальцювання Формат видання це розмір сторінки видання після обрізки блока по ширині і довжині.
78769. Вышивка атласными ленточками 3.28 MB
  Для вышивки лентами используются длинные иглы поэтому когда на игле остается очень короткий конец ленты завершить узор бывает проблематично. Для того чтобы вывести на изнаночную сторону ткани короткий конец ленты выньте его из иглы затем иглу без ленты вколите до самого ушка в...
78770. Роль Русской Православной Церкви в кризисные моменты истории России 316.5 KB
  Сюда можно отнести несколько факторов: Существование мощных течений которые свидетельствуют о крупной роли Русской Православной Церкви в деле формирования и поддержания русской государственности: Первым актом национального самосознания русского народа было крещение в Православие.
78771. Эксплуатация судовых вспомогательных и утилизационных котлов 480.17 KB
  Специфика морского транспорта как сферы экономики заключается в том, что он сам не производит продукцию, а только участвует в ее создании, обеспечивая производство сырьем, материалами, оборудованием и доставляя готовую продукцию потребителю.
78772. Изучение форм бухгалтерской отчетности ЗАО «Восход» 666.5 KB
  Цель работы состояла в изучении форм бухгалтерской отчетности конкретного сельскохозяйственного предприятия, выявление возможных направлений улучшения организации ее составления и использования для совершенствования управленческой деятельности в соответствующем хозяйстве.
78773. Облік процесу запасів процесу виробництва 244 KB
  Підприємницька діяльність можлива різних видів: виробнича, комерційна або грошово-кредитна. Згідно з цим запаси діяльності такі: у першому випадку – різні речовини та сили природи: сировина, матеріали (основні, допоміжні паливні, мастильний тощо), у другому – готова продукція виробничої сфери...