17521

Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №5 На тему: Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів Мета роботи Ознайомитись з різними типами цифрових фільтрів навчитись розраховувати різні типи фільтрів і застосовувати їх на практи...

Украинкский

2013-07-01

338 KB

49 чел.

Лабораторна робота №5

На тему: «Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів»

Мета роботи

Ознайомитись з різними типами цифрових фільтрів, навчитись розраховувати різні типи фільтрів і застосовувати їх на практиці. Дослідити  використання вагових функцій при побудові  частотних фільтрів з скінченною імпульсною характеристикою.

Теоретичні відомості

Фільтр — це система, що вибірково змінює форму сигналу (амплітудно-частотну або фазово-частотну характеристику). Основною метою фільтрації є: покращання якості сигналу, виділення із сигналів інформації або розділення, об’єднаних раніше, сигналів для, наприклад, ефективного використання доступного каналу зв’язку.

Типи цифрових фільтрів

ЦФ поділені на два великі класи: фільтри з нескінченною імпульсною характеристикою (НІХ-фільтри) і фільтри з скінченною імпульсною характеристикою (СІХ-фільтри). Фільтр кожного типу (рис.1) можна представити через коефіцієнти його імпульсної характеристики h(k) (k=0,1,…). Вхідний і вихідний сигнали фільтра зв’язані через операцію згортки, даний зв'язок наведений у виразі (1) для НІХ- фільтра, і у виразі (2) для СІХ – фільтра.

     (1)

     (2)

Рис.1 Спрощена схема ЦФ

Для НІХ – фільтрів імпульсна характеристика має безкінечну довжину, тоді як для СІХ – фільтра вона скінченна, оскільки h(k) для СІХ-фільтрів може приймати всього N  значень. На практиці вичислити  вихід НІХ - фільтра з використанням рівності (1) неможливо, оскільки довжина імпульсного відгуку надто велика (теоретично – нескінченна). Замість цього рівняння НІХ – фільтрації переписується в рекурсивній формі

,   (3)

де  і  - коефіцієнти фільтра. Дана рівність (значення  h(k) для СІХ-фільтра або  і  для НІХ- фільтра) використовується в багатьох задачах розробки фільтрів. Варто відмітити, що у виразі (3)  поточна вихідна вибірка y(n) являється функцією попередніх виходів, а також поточної і попередніх вхідних вибірок. Таким чином НІХ-фільтр — це в деякому вигляді система із зворотнім зв’язком. Якщо  взяти  всі  bk  рівними нулю, то вираз (3) зводиться до рівності (2).

,   (4)

де, P — порядок фільтру, x(n) — вхідній сигнал, y(n) — вихідний сигнал, а bi — коефіцієнти  фільтра.

, (5)

де, P — порядок вхідного сигналу, bi — коефіцієнти вхідного сигналу, Q — порядок зворотнього зв’язку(порядок фільтру) , ai — коефіцієнти зворотнього зв’язку , x(n) — вхідний, а y(n) — вихідний сигнали.

Вирази (4) та (5) відповідають рівнянням СІХ на НІХ фільтрів відповідно.

Використання цифрових фільтрів

ЦФ набули широкого використання у задачах частотної фільтрації. Розрізняють такі частотні фільтри:

  •  Фільтр низьких частот (ФНЧ) — фільтр, що ефективно пропускає частотний спектр сигналу нижче деякої  частоти (частота зрізу), і зменшує (чи послаблює) частоти сигналу вище цієї частоти. Степінь послаблення кожної частоти залежить від виду фільтра.
  •  Фільтр верхніх частот (ФВЧ) — фільтр, що пропускає високі частоти вхідного сигналу, при цьому послаблює  частоти  сигналу менші, ніж частота зрізу. Степінь послаблення залежить от конкретного виду фільтра.
  •  Смуговий фільтр — фільтр, який пропускає частоти, що знаходяться в потрібному діапазоні і вирізує всі решта частоти. Такі фільтри також можуть бути виготовлені комбінуванням ФНЧ і ФВЧ.
  •  Загороджувальний  фільтр ( режекторний фільтр) — фільтр, що не пропускає коливання деякого визначеного діапазону частот, і пропускає коливання з частотами, що виходять за межі цього діапазону. Загороджувальний фільтр, призначений для послаблення одної визначеної частоти, називається вузькосмуговим загороджувальним фільтром або фільтром-пробкою.

На рис.2 наведені графіки ідеальних амплітудно-частотних характеристик (АЧХ) описаних

типів фільтрів.

Рис.1 . Графіки ідеальних АЧХ різних типів фільтрів

Завдання

Варіант 5

Вар.

Вхідний сигнал,

t=0..1000

Частоти вхідного сигналу, кГц,ωn

Тип

фільтр

Частоти фільтра,кГц

Ширина перехідної

зони, кГц

Частота

дискретизації,

кГц

Затухання в смузі послаблення,дБ

5

2,5

3,0

7,0

ФВЧ

3,2

0,12

15

-53,8

Виконання

Використовуючи таблицю 1, вибрав hD(n) для ФВЧ:

З таблиці 2 задовіляє умову вікно Гемінга.

Тип вікна

Рівень бокових пелюсток, дБ

Ширина перехідної зони,(N=256)

Аналітичний вираз

Геммінга

-53,8

0,0161

Тоді кГц

Згідно таблиці 2, для функції Гемінга при N=256 смуга перехідної рівна 0,0161. З формули (8) знайшов значення коефіцієнта . Знаходимо значення N при  , , візьмемо  N=515, і коефіцієнти будуть рівні

Де,

Із-за ефекту змазування характеристики фільтра, що вводиться ваговою функцією, частота зрізу отриманого фільтра буде відрізнятися від заданої в специфікації. Щоб врахувати цей ефект, використаємо  — центр смуги переходу:

де - значення ширини перехідної зони згідно завдання, -  частота дискретизації .

Обчислюємо значення hD(n) згідно  виразу (7).

Оскільки  симетрична функції то варто обчислити лише її значення на проміжку

n=0:

n=1:

n=2:

n=257:

Обчисливши всі коефіцієнти , решта коефіцієнтів знаходимо із правила симетріїі  .

Отримані коефіцієнти підставляємо у вираз:

,

,

,

Де x(-n)=0.

Алгоритм  обчислення коефіцієнтів фільтра та його застосування  реалізований програмно на основі середовища Matlab. Текст програми наведений в додатку. Нижче наведено результати розрахунку і застосування спроектованого фільтра.

Результат роботи програми

Малюнок 1. Вхідний складений сигнал

Малюнок 2. Частотний спектр складеного сигналу

Малюнок 3. Графік вагової функції

Малюнок 4.Вихідний відфільтрований складений сигнал

Малюнок 5. Частотний спектр відфільтрованого сигналу

Малюнок 6. Імпульсна характеристика фільтра

Текст програми

clear all;

clc;

%Filter parameters

Fc=3200;

Fs=15000;

df=120;

N=256;

df2=0.0161;

%Additional calculation

df1=df/Fs;

k=N*df2;

N1=round(k/df1)

%Input signal generation

t=-1:2/Fs:1-2/Fs;

xx=cos(2.5*pi*t*1000)+cos(3.0*pi*t*1000)+cos(7.0*pi*t*1000);

k=size(t)

%Input signal extention

for i=1:k(2)+N1;

   if i<=N1

       x(i)=0;

   else

       x(i)=xx(i-N1);

   end;

end;

% Input signal visualisation

figure(1);

x1=x(400:700);

 

plot(x1);

title('Input signal');

figure(2);

xf=abs(fft(x));

plot(xf);

title('Input signal frequences');

n=-floor(N1/2):floor(N1/2)

% Wage function calculation and visualisation

for i=1:N1

   w(i)=0.54-0.46*cos(2*pi*i/N);

   

end;

figure(3);

plot(w);

title('Function Geminga');

 

%Impulse response calculation

fc1=(Fc+df/2)/Fs;

for i=1:N1

    if n(i)==0         

        Hdn(i)=1-2*fc1*w(i);         

    else

        Hdn(i)=-2*fc1*sin(n(i)*2*pi*fc1)/(2*pi*fc1*n(i));

    end;

end;

y=zeros(1,k(2)+N1+1);

% Signal filtration

for m=N1+1:k(2)+N1+1

    for i=1:N1

   y(m)=y(m)+Hdn(i)*x(m-i);

    end;

end;

% Output sinnal cutting

for m=N1+1:k(2)+N1+1

 yy(m-N1)=y(m);    

end;

% results visualisation

figure(4)  

y1=y(700:1000);

 

plot(y1);

title('Output signal');

figure(5)

plot(abs(fft(yy)));

title('Output signal frequences');

figure(6)  

plot(abs(fft(Hdn)));

title('Impulse function');

Висновок: Після виконання даної лабораторної роботи вдалося ознайомитися з різними типами цифрових фільтрів. Навчився розраховувати різні типи фільтрів і застосовувати їх на практиці. Дослідив використання вагових функцій при побудові частотних фільтрів з скінченною характеристикою.


 

А также другие работы, которые могут Вас заинтересовать

31056. Внешняя политика в эпоху Ивана Грозного 29.5 KB
  Покорение Казани стало большим внешнеполитич успехом России. В 1556 была присоединена Астрахань у России оказались также земли Ногайской Орды. Для России Ливония была интересна прежде всего как выход в Балтику. Поводом к войне стала неуплата Ливонией России юрьевой дани в течение 50 лет.
31057. Россия в конце 16-нач18в. Смутное время: причины, содержание, этапы и итоги данной эпохи 40 KB
  Первый этап Смутного времени начался династическим кризисом вызванным убийством царем Иваном IV Грозным своего старшего сына Ивана приходом к власти его брата Федора Ивановича и смертью их младшего сводного брата Дмитрия по убеждению многих зарезанного приспешниками фактического правителя страны Бориса Годунова. В апреле 1605 после неожиданной смерти Бориса Годунова и непризнания его сына Федора царем на сторону Лжедмитрия I перешло и московское боярство. В июне 1605 самозванец почти на год стал царем Дмитрием I. Через два дня царем...
31058. Россия в 17в. – хоз-во, общество, политич строй и гос управление 31 KB
  Все население можно разделить на 2 группы: служилые слоинесли ту или иную форму гос службы и тяглое населениесодержали их платя налоги и исполняя повиности. Бояре занимали высшие гос должности обладали крупными вотчинами и поместьями. Существовало 2 периода в развитии русской госвенности 17в.
31059. Воспалительные поражения (сиалоадениты) слюнных желез 22.43 KB
  Сиалоаденит может быть самостоятельным первичным но чаще является осложнением или существенным проявлением какоголибо другого заболевания вторичный сиалоаденит. По течению выделяют острый и хронический сиалоаденит. По этиологии выделяют вирусный бактериальный грибковый сиалоаденит.
31060. Эпидемический паротит (свинка) 14.68 KB
  Входными воротами являются слизистые оболочки полости рта носа глотки с развитием последующей вирусемии и фиксацией вируса в слюнных и других железах. В слюнных железах вирус размножается и отсюда выделяется со слюной.
31061. Поздние осложнения диабета 17.57 KB
  Наличием диабета обусловлена высокая частота инфарктов миокарда инсультов и случаев гангрены пальцев ног или стопы. Установлено что рядом с геном кодирующим синтез инсулина расположен участок ДНК Uаллель постоянный генетический маркер предрасположенности к атеросклерозу не только у больных диабетом I и II типов но также и у лиц без диабета. Однако у больных диабетом наследственная предрасположенность к атеросклерозу реализуется чаще чем у лиц без диабета.
31062. Цитомегаловирусный сиалоаденит 14.33 KB
  При локализованной форме чаще поражаются околоушные железы где вирус фиксируется в ацинарных и протоковых клетках и может существовать в виде латентной инфекции. Макроскопически слюнные железы увеличены. В исходе локализованной формы цитомегаловирусного сиалоаденита как правило в той или иной степени развивается склероз слюнной железы.
31063. Атоиммунные поражения при ревматических болезнях, активном хроническом вирусном гепатите и струме Хашимото, синдроме Шегрена и синдроме Микулича (сухой синдром) 15.9 KB
  Особую группу заболеваний слюнных желез составляют аутоиммунные поражения при ревматических болезнях активном хроническом вирусном гепатите и струме Хашимото синдроме Шегрена и синдроме Микулича сухой синдром. Для сухого синдрома Шегрена характерно поражение всех слюнных желез что сопровождается ксеростомией сухость слизистой оболочки рта слезных желез с развитием ксерофтальмии и суставов с формированием полиартрита. Для синдрома Микулича характерно поражение больших и малых слюнных желез и слезных желез которые увеличиваются и...
31064. Кисты слюнных желез 14.87 KB
  Кисты слюнных желез. Кисты чаще развиваются в малых слюнных железах. Различают ретенционные и слизистые кисты. Микроскопически стенка кисты представлена соединительной тканью выстлана уплощенным эпителием.