17521

Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №5 На тему: Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів Мета роботи Ознайомитись з різними типами цифрових фільтрів навчитись розраховувати різні типи фільтрів і застосовувати їх на практи...

Украинкский

2013-07-01

338 KB

59 чел.

Лабораторна робота №5

На тему: «Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів»

Мета роботи

Ознайомитись з різними типами цифрових фільтрів, навчитись розраховувати різні типи фільтрів і застосовувати їх на практиці. Дослідити  використання вагових функцій при побудові  частотних фільтрів з скінченною імпульсною характеристикою.

Теоретичні відомості

Фільтр — це система, що вибірково змінює форму сигналу (амплітудно-частотну або фазово-частотну характеристику). Основною метою фільтрації є: покращання якості сигналу, виділення із сигналів інформації або розділення, об’єднаних раніше, сигналів для, наприклад, ефективного використання доступного каналу зв’язку.

Типи цифрових фільтрів

ЦФ поділені на два великі класи: фільтри з нескінченною імпульсною характеристикою (НІХ-фільтри) і фільтри з скінченною імпульсною характеристикою (СІХ-фільтри). Фільтр кожного типу (рис.1) можна представити через коефіцієнти його імпульсної характеристики h(k) (k=0,1,…). Вхідний і вихідний сигнали фільтра зв’язані через операцію згортки, даний зв'язок наведений у виразі (1) для НІХ- фільтра, і у виразі (2) для СІХ – фільтра.

     (1)

     (2)

Рис.1 Спрощена схема ЦФ

Для НІХ – фільтрів імпульсна характеристика має безкінечну довжину, тоді як для СІХ – фільтра вона скінченна, оскільки h(k) для СІХ-фільтрів може приймати всього N  значень. На практиці вичислити  вихід НІХ - фільтра з використанням рівності (1) неможливо, оскільки довжина імпульсного відгуку надто велика (теоретично – нескінченна). Замість цього рівняння НІХ – фільтрації переписується в рекурсивній формі

,   (3)

де  і  - коефіцієнти фільтра. Дана рівність (значення  h(k) для СІХ-фільтра або  і  для НІХ- фільтра) використовується в багатьох задачах розробки фільтрів. Варто відмітити, що у виразі (3)  поточна вихідна вибірка y(n) являється функцією попередніх виходів, а також поточної і попередніх вхідних вибірок. Таким чином НІХ-фільтр — це в деякому вигляді система із зворотнім зв’язком. Якщо  взяти  всі  bk  рівними нулю, то вираз (3) зводиться до рівності (2).

,   (4)

де, P — порядок фільтру, x(n) — вхідній сигнал, y(n) — вихідний сигнал, а bi — коефіцієнти  фільтра.

, (5)

де, P — порядок вхідного сигналу, bi — коефіцієнти вхідного сигналу, Q — порядок зворотнього зв’язку(порядок фільтру) , ai — коефіцієнти зворотнього зв’язку , x(n) — вхідний, а y(n) — вихідний сигнали.

Вирази (4) та (5) відповідають рівнянням СІХ на НІХ фільтрів відповідно.

Використання цифрових фільтрів

ЦФ набули широкого використання у задачах частотної фільтрації. Розрізняють такі частотні фільтри:

  •  Фільтр низьких частот (ФНЧ) — фільтр, що ефективно пропускає частотний спектр сигналу нижче деякої  частоти (частота зрізу), і зменшує (чи послаблює) частоти сигналу вище цієї частоти. Степінь послаблення кожної частоти залежить від виду фільтра.
  •  Фільтр верхніх частот (ФВЧ) — фільтр, що пропускає високі частоти вхідного сигналу, при цьому послаблює  частоти  сигналу менші, ніж частота зрізу. Степінь послаблення залежить от конкретного виду фільтра.
  •  Смуговий фільтр — фільтр, який пропускає частоти, що знаходяться в потрібному діапазоні і вирізує всі решта частоти. Такі фільтри також можуть бути виготовлені комбінуванням ФНЧ і ФВЧ.
  •  Загороджувальний  фільтр ( режекторний фільтр) — фільтр, що не пропускає коливання деякого визначеного діапазону частот, і пропускає коливання з частотами, що виходять за межі цього діапазону. Загороджувальний фільтр, призначений для послаблення одної визначеної частоти, називається вузькосмуговим загороджувальним фільтром або фільтром-пробкою.

На рис.2 наведені графіки ідеальних амплітудно-частотних характеристик (АЧХ) описаних

типів фільтрів.

Рис.1 . Графіки ідеальних АЧХ різних типів фільтрів

Завдання

Варіант 5

Вар.

Вхідний сигнал,

t=0..1000

Частоти вхідного сигналу, кГц,ωn

Тип

фільтр

Частоти фільтра,кГц

Ширина перехідної

зони, кГц

Частота

дискретизації,

кГц

Затухання в смузі послаблення,дБ

5

2,5

3,0

7,0

ФВЧ

3,2

0,12

15

-53,8

Виконання

Використовуючи таблицю 1, вибрав hD(n) для ФВЧ:

З таблиці 2 задовіляє умову вікно Гемінга.

Тип вікна

Рівень бокових пелюсток, дБ

Ширина перехідної зони,(N=256)

Аналітичний вираз

Геммінга

-53,8

0,0161

Тоді кГц

Згідно таблиці 2, для функції Гемінга при N=256 смуга перехідної рівна 0,0161. З формули (8) знайшов значення коефіцієнта . Знаходимо значення N при  , , візьмемо  N=515, і коефіцієнти будуть рівні

Де,

Із-за ефекту змазування характеристики фільтра, що вводиться ваговою функцією, частота зрізу отриманого фільтра буде відрізнятися від заданої в специфікації. Щоб врахувати цей ефект, використаємо  — центр смуги переходу:

де - значення ширини перехідної зони згідно завдання, -  частота дискретизації .

Обчислюємо значення hD(n) згідно  виразу (7).

Оскільки  симетрична функції то варто обчислити лише її значення на проміжку

n=0:

n=1:

n=2:

n=257:

Обчисливши всі коефіцієнти , решта коефіцієнтів знаходимо із правила симетріїі  .

Отримані коефіцієнти підставляємо у вираз:

,

,

,

Де x(-n)=0.

Алгоритм  обчислення коефіцієнтів фільтра та його застосування  реалізований програмно на основі середовища Matlab. Текст програми наведений в додатку. Нижче наведено результати розрахунку і застосування спроектованого фільтра.

Результат роботи програми

Малюнок 1. Вхідний складений сигнал

Малюнок 2. Частотний спектр складеного сигналу

Малюнок 3. Графік вагової функції

Малюнок 4.Вихідний відфільтрований складений сигнал

Малюнок 5. Частотний спектр відфільтрованого сигналу

Малюнок 6. Імпульсна характеристика фільтра

Текст програми

clear all;

clc;

%Filter parameters

Fc=3200;

Fs=15000;

df=120;

N=256;

df2=0.0161;

%Additional calculation

df1=df/Fs;

k=N*df2;

N1=round(k/df1)

%Input signal generation

t=-1:2/Fs:1-2/Fs;

xx=cos(2.5*pi*t*1000)+cos(3.0*pi*t*1000)+cos(7.0*pi*t*1000);

k=size(t)

%Input signal extention

for i=1:k(2)+N1;

   if i<=N1

       x(i)=0;

   else

       x(i)=xx(i-N1);

   end;

end;

% Input signal visualisation

figure(1);

x1=x(400:700);

 

plot(x1);

title('Input signal');

figure(2);

xf=abs(fft(x));

plot(xf);

title('Input signal frequences');

n=-floor(N1/2):floor(N1/2)

% Wage function calculation and visualisation

for i=1:N1

   w(i)=0.54-0.46*cos(2*pi*i/N);

   

end;

figure(3);

plot(w);

title('Function Geminga');

 

%Impulse response calculation

fc1=(Fc+df/2)/Fs;

for i=1:N1

    if n(i)==0         

        Hdn(i)=1-2*fc1*w(i);         

    else

        Hdn(i)=-2*fc1*sin(n(i)*2*pi*fc1)/(2*pi*fc1*n(i));

    end;

end;

y=zeros(1,k(2)+N1+1);

% Signal filtration

for m=N1+1:k(2)+N1+1

    for i=1:N1

   y(m)=y(m)+Hdn(i)*x(m-i);

    end;

end;

% Output sinnal cutting

for m=N1+1:k(2)+N1+1

 yy(m-N1)=y(m);    

end;

% results visualisation

figure(4)  

y1=y(700:1000);

 

plot(y1);

title('Output signal');

figure(5)

plot(abs(fft(yy)));

title('Output signal frequences');

figure(6)  

plot(abs(fft(Hdn)));

title('Impulse function');

Висновок: Після виконання даної лабораторної роботи вдалося ознайомитися з різними типами цифрових фільтрів. Навчився розраховувати різні типи фільтрів і застосовувати їх на практиці. Дослідив використання вагових функцій при побудові частотних фільтрів з скінченною характеристикою.


 

А также другие работы, которые могут Вас заинтересовать

54926. ПЛАН ПСИХОЛОГИЧЕСКОГО АНАЛИЗА УРОКА 32.5 KB
  Место и значение данного урока в перспективном плане развития учащихся Формулировка цели. В какой мере содержание и структура урока отвечают принципам развивающего обучения: Соотношение нагрузки на память и мышление учащихся; Соотношение воспроизводящей и творческой деятельности учащихся; Соотношение усвоения знаний в готовом виде со слов учителя ученика и т. и самостоятельного поиска; Какие звенья проблемноэвристического обучения выполняются учителем и какие учащимися кто ставит проблему кто решает; Соотношение...
54927. Размножение и развитие насекомых 52.5 KB
  Так как учитель ставит перед учениками различные интересные задачи решение которых требует не только жизненного опыта но и логического мышления. Организация внимания Для организации внимания учеников на занятиях учитель обращает внимание на такие аспекты как: выделение важной информации то есть основную так называемый скелет новой темы который будет обрастать более подробной информацией. Важную информацию учитель выделяет с помощью занесения ее в конспект изменения тембра голоса также с помощью сосредоточения учеников на ней чтобы они...
54928. Валовой национальный продукт и методы его исчисления. Номинальный, реальный и потенциальный ВНП 20.34 KB
  Валовой национальный продукт – это рыночная стоимость конечных товаров и услуг, произведенных в течение года факторами производства, принадлежащими гражданам данной страны независимо от их местонахождения. Существует три метода определения величины ВНП: - метод конечного использования – определение ВНП как суммы расходов
54931. Национальное богатство, отраслевая и секторальная структура национальной экономики 19.19 KB
  Ведущей отраслью хозяйства страны является промышленность, так как она дает больше 50% совокупного общественного продукта, в ней сконцентрировано половина основных фондов страны и она объединяет большую часть трудовых ресурсов.
54932. Назначение и устройство токарно-винторезного станка ТВ-6 230.5 KB
  Цели урока: Образовательная расширение представлений учащихся об устройстве и назначении токарно-винторезного станка ТВ-6; Воспитательная приветь качества аккуратности и собранности при выполнении трудовых операциях на токарно-винторезном станке; Развивающая развить навыки при работе на токарно-винторезном станке.
54933. Производственная структура предприятия. Структура основного производства 54.5 KB
  В зависимости от методов обработки изделий на предприятиях появляются соответствующие подразделения а в аппарате управления соответствующие функции и звенья. Каждое предприятие состоит из производств цехов участков хозяйств органов управления и организаций по обслуживанию работников предприятия. Четкая классификация и установление взаимосвязей между ними позволяют обоснованно организовать ход производства и рационально сформировать структуру предприятия.