17521

Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №5 На тему: Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів Мета роботи Ознайомитись з різними типами цифрових фільтрів навчитись розраховувати різні типи фільтрів і застосовувати їх на практи...

Украинкский

2013-07-01

338 KB

66 чел.

Лабораторна робота №5

На тему: «Розрахунок і побудова цифрових СІХ фільтрів з частотною вибіркою. Фільтрація складених сигналів»

Мета роботи

Ознайомитись з різними типами цифрових фільтрів, навчитись розраховувати різні типи фільтрів і застосовувати їх на практиці. Дослідити  використання вагових функцій при побудові  частотних фільтрів з скінченною імпульсною характеристикою.

Теоретичні відомості

Фільтр — це система, що вибірково змінює форму сигналу (амплітудно-частотну або фазово-частотну характеристику). Основною метою фільтрації є: покращання якості сигналу, виділення із сигналів інформації або розділення, об’єднаних раніше, сигналів для, наприклад, ефективного використання доступного каналу зв’язку.

Типи цифрових фільтрів

ЦФ поділені на два великі класи: фільтри з нескінченною імпульсною характеристикою (НІХ-фільтри) і фільтри з скінченною імпульсною характеристикою (СІХ-фільтри). Фільтр кожного типу (рис.1) можна представити через коефіцієнти його імпульсної характеристики h(k) (k=0,1,…). Вхідний і вихідний сигнали фільтра зв’язані через операцію згортки, даний зв'язок наведений у виразі (1) для НІХ- фільтра, і у виразі (2) для СІХ – фільтра.

     (1)

     (2)

Рис.1 Спрощена схема ЦФ

Для НІХ – фільтрів імпульсна характеристика має безкінечну довжину, тоді як для СІХ – фільтра вона скінченна, оскільки h(k) для СІХ-фільтрів може приймати всього N  значень. На практиці вичислити  вихід НІХ - фільтра з використанням рівності (1) неможливо, оскільки довжина імпульсного відгуку надто велика (теоретично – нескінченна). Замість цього рівняння НІХ – фільтрації переписується в рекурсивній формі

,   (3)

де  і  - коефіцієнти фільтра. Дана рівність (значення  h(k) для СІХ-фільтра або  і  для НІХ- фільтра) використовується в багатьох задачах розробки фільтрів. Варто відмітити, що у виразі (3)  поточна вихідна вибірка y(n) являється функцією попередніх виходів, а також поточної і попередніх вхідних вибірок. Таким чином НІХ-фільтр — це в деякому вигляді система із зворотнім зв’язком. Якщо  взяти  всі  bk  рівними нулю, то вираз (3) зводиться до рівності (2).

,   (4)

де, P — порядок фільтру, x(n) — вхідній сигнал, y(n) — вихідний сигнал, а bi — коефіцієнти  фільтра.

, (5)

де, P — порядок вхідного сигналу, bi — коефіцієнти вхідного сигналу, Q — порядок зворотнього зв’язку(порядок фільтру) , ai — коефіцієнти зворотнього зв’язку , x(n) — вхідний, а y(n) — вихідний сигнали.

Вирази (4) та (5) відповідають рівнянням СІХ на НІХ фільтрів відповідно.

Використання цифрових фільтрів

ЦФ набули широкого використання у задачах частотної фільтрації. Розрізняють такі частотні фільтри:

  •  Фільтр низьких частот (ФНЧ) — фільтр, що ефективно пропускає частотний спектр сигналу нижче деякої  частоти (частота зрізу), і зменшує (чи послаблює) частоти сигналу вище цієї частоти. Степінь послаблення кожної частоти залежить від виду фільтра.
  •  Фільтр верхніх частот (ФВЧ) — фільтр, що пропускає високі частоти вхідного сигналу, при цьому послаблює  частоти  сигналу менші, ніж частота зрізу. Степінь послаблення залежить от конкретного виду фільтра.
  •  Смуговий фільтр — фільтр, який пропускає частоти, що знаходяться в потрібному діапазоні і вирізує всі решта частоти. Такі фільтри також можуть бути виготовлені комбінуванням ФНЧ і ФВЧ.
  •  Загороджувальний  фільтр ( режекторний фільтр) — фільтр, що не пропускає коливання деякого визначеного діапазону частот, і пропускає коливання з частотами, що виходять за межі цього діапазону. Загороджувальний фільтр, призначений для послаблення одної визначеної частоти, називається вузькосмуговим загороджувальним фільтром або фільтром-пробкою.

На рис.2 наведені графіки ідеальних амплітудно-частотних характеристик (АЧХ) описаних

типів фільтрів.

Рис.1 . Графіки ідеальних АЧХ різних типів фільтрів

Завдання

Варіант 5

Вар.

Вхідний сигнал,

t=0..1000

Частоти вхідного сигналу, кГц,ωn

Тип

фільтр

Частоти фільтра,кГц

Ширина перехідної

зони, кГц

Частота

дискретизації,

кГц

Затухання в смузі послаблення,дБ

5

2,5

3,0

7,0

ФВЧ

3,2

0,12

15

-53,8

Виконання

Використовуючи таблицю 1, вибрав hD(n) для ФВЧ:

З таблиці 2 задовіляє умову вікно Гемінга.

Тип вікна

Рівень бокових пелюсток, дБ

Ширина перехідної зони,(N=256)

Аналітичний вираз

Геммінга

-53,8

0,0161

Тоді кГц

Згідно таблиці 2, для функції Гемінга при N=256 смуга перехідної рівна 0,0161. З формули (8) знайшов значення коефіцієнта . Знаходимо значення N при  , , візьмемо  N=515, і коефіцієнти будуть рівні

Де,

Із-за ефекту змазування характеристики фільтра, що вводиться ваговою функцією, частота зрізу отриманого фільтра буде відрізнятися від заданої в специфікації. Щоб врахувати цей ефект, використаємо  — центр смуги переходу:

де - значення ширини перехідної зони згідно завдання, -  частота дискретизації .

Обчислюємо значення hD(n) згідно  виразу (7).

Оскільки  симетрична функції то варто обчислити лише її значення на проміжку

n=0:

n=1:

n=2:

n=257:

Обчисливши всі коефіцієнти , решта коефіцієнтів знаходимо із правила симетріїі  .

Отримані коефіцієнти підставляємо у вираз:

,

,

,

Де x(-n)=0.

Алгоритм  обчислення коефіцієнтів фільтра та його застосування  реалізований програмно на основі середовища Matlab. Текст програми наведений в додатку. Нижче наведено результати розрахунку і застосування спроектованого фільтра.

Результат роботи програми

Малюнок 1. Вхідний складений сигнал

Малюнок 2. Частотний спектр складеного сигналу

Малюнок 3. Графік вагової функції

Малюнок 4.Вихідний відфільтрований складений сигнал

Малюнок 5. Частотний спектр відфільтрованого сигналу

Малюнок 6. Імпульсна характеристика фільтра

Текст програми

clear all;

clc;

%Filter parameters

Fc=3200;

Fs=15000;

df=120;

N=256;

df2=0.0161;

%Additional calculation

df1=df/Fs;

k=N*df2;

N1=round(k/df1)

%Input signal generation

t=-1:2/Fs:1-2/Fs;

xx=cos(2.5*pi*t*1000)+cos(3.0*pi*t*1000)+cos(7.0*pi*t*1000);

k=size(t)

%Input signal extention

for i=1:k(2)+N1;

   if i<=N1

       x(i)=0;

   else

       x(i)=xx(i-N1);

   end;

end;

% Input signal visualisation

figure(1);

x1=x(400:700);

 

plot(x1);

title('Input signal');

figure(2);

xf=abs(fft(x));

plot(xf);

title('Input signal frequences');

n=-floor(N1/2):floor(N1/2)

% Wage function calculation and visualisation

for i=1:N1

   w(i)=0.54-0.46*cos(2*pi*i/N);

   

end;

figure(3);

plot(w);

title('Function Geminga');

 

%Impulse response calculation

fc1=(Fc+df/2)/Fs;

for i=1:N1

    if n(i)==0         

        Hdn(i)=1-2*fc1*w(i);         

    else

        Hdn(i)=-2*fc1*sin(n(i)*2*pi*fc1)/(2*pi*fc1*n(i));

    end;

end;

y=zeros(1,k(2)+N1+1);

% Signal filtration

for m=N1+1:k(2)+N1+1

    for i=1:N1

   y(m)=y(m)+Hdn(i)*x(m-i);

    end;

end;

% Output sinnal cutting

for m=N1+1:k(2)+N1+1

 yy(m-N1)=y(m);    

end;

% results visualisation

figure(4)  

y1=y(700:1000);

 

plot(y1);

title('Output signal');

figure(5)

plot(abs(fft(yy)));

title('Output signal frequences');

figure(6)  

plot(abs(fft(Hdn)));

title('Impulse function');

Висновок: Після виконання даної лабораторної роботи вдалося ознайомитися з різними типами цифрових фільтрів. Навчився розраховувати різні типи фільтрів і застосовувати їх на практиці. Дослідив використання вагових функцій при побудові частотних фільтрів з скінченною характеристикою.


 

А также другие работы, которые могут Вас заинтересовать

69575. Правила назначения IP адресов 855 KB
  При этом необходимо придерживаться следующих обязательных правил об исключениях мы поговорим позже: Адреса не должны дублироваться: IP адрес уникальный идентификатор узла или порта маршрутизатора Если узлы и порты маршрутизаторов находятся в одной канальной сети...
69576. Работа ARP протокола 659 KB
  При сканировании сети так же была определена система взаимодействия по протоколу IP узлов находящихся в одной либо разных сетях суть которой состоит в следующем: при взаимодействии между узлами одной IP сети протокол RP используется станцией отправителем для разрешения МАС...
69577. BGP 617.5 KB
  В предыдущих уроках были рассмотрены протоколы динамической маршрутизации, используемые в основном для работы в сетях среднего либо малого размера. И хотя, при описании таких протоколов как OSPF и EIGRP использовалось понятие Автономная система...
69578. Курс Internet Protocol 458 KB
  Способы передачи информации в компьютерных сетях были рассмотрены в курсе Локальные сети при этом для описания использовались первые два уровня модели OSI физический и канальный образующих базовую сетевую технологию БСТ.
69579. OSPF (Часть II) 6.73 MB
  В предыдущем уроке были рассмотрены теоретические основы взаимодействий, происходящих между маршрутизаторами работающими по протоколу OSPF. Таким образом, на данный момент изучен метод построения маршрутных таблиц протоколом OSPF, алгоритм работы протокола при построении графа...
69580. Автономные адреса 6.71 MB
  Какие адреса может использовать компания для адресации своей сети Очевидно абсолютно любые адреса разрешенные для узлов классов А В и С. При этом количество доступных компании адресов столь велико что делить данные сети на подсети с помощью маски усложняя себе таким образом жизнь просто...
69581. Удаленный доступ 4.83 MB
  Пример: пусть некоторый удаленный пользователь хочет подключиться к своей корпоративной сети будучи в командировке. Для этого в его корпоративной сети должен быть компьютер готовый принимать входящие подключения по телефонной сети общего пользования или по сети ISDN.
69582. Заголовок IP пакета 4.7 MB
  Так же заголовок IP пакета может дополнительно содержать в себе не обязательно используемые поля опции. Опции могут как присутствовать в пакете так и отсутствовать их длина при этом не может превысить 40 байт. Опции в IP пакете используются не часто в основном с целью диагностики...
69583. Практическая маршрутизация 3.72 MB
  При построении IP сетей особое внимание следует уделять соответствию присвоенных адресов интерфейсов маршрутизатора и подключенных кабелей. Иначе возможны ситуации когда, например, к порту маршрутизатора 1.0.0.1 подключен по невнимательности узел 2.0.0.10.