17562

Дослідження методів функціонування модуляторів та демодуляторів

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №1 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Дослідження методів функціонування модуляторів та демодуляторів Мета: Вивчити особливості функціювання різноманітних модуляторів та демодуляторів. Теоретичні відомості В зага...

Украинкский

2013-07-04

605.5 KB

3 чел.

Лабораторна робота №1

з дисципліни: «Автоматизоване проектування ТЗЗІ»

Тема: «Дослідження методів функціонування модуляторів та демодуляторів»

Мета: Вивчити особливості функціювання різноманітних модуляторів та демодуляторів.

Теоретичні відомості

В загальному випадку несуче коливання можна представити аналітично:

В цьому виразі амплітуда А(t), фаза φ(t) та частота ω(t) змінюються згідно закону інформаційного сигналу, що передається каналом зв'язку. В залежності від того, який саме параметр змінюється розрізняють, відповідно, амплітудну (АМ), фазову (ФМ) та частотну (ЧМ) модуляції.

При АМ амплітуда несучого коливання являється функцією часу:

А0 – постійна складова, що дорівнює середньому значенню амплітуди несучого коливання: А0=(Аminmax)/2 , де Аmin та Аmax  - мінімальна та максимальна амплітуди несучого коливання, а F(t) – функція часу, підпорядкована тому ж закону, що й інформаційний сигнал – модуляційна функція.

Тут Т0 – період модулюючого сигналу, ТН – період несучого коливання.

У випадку, коли модуляційна функція являє собою гармонічне коливання F(t)=Mcos(Ωt+φ0), аналітичний вигляд коливання для однотональної АМ:

Тут М=ΔА/A0 – коефіцієнт модуляції, який характеризує глибину модуляції, ΔА=Amax-A0 – девіація амплітуди, Amax – максимальне значення амплітуди несучого коливання, Ω та φ0 – частота та фаза модулюючого сигналу, ωН та φН – частота та фаза несучого коливання.

Спектр сигналу для однотональної АМ (рис. 4.1.2) має три складові: центральну, розташовану на частоті ωН та дві бокові, симетричні відносно центральної на Ω.

Для ЧМ за законом інформаційного сигналу змінюється частота несучого коливання. Повна фаза косинуса несучого коливання прямопропорційна інтегралу від інформаційного сигналу:

Тут Δω=ωН – Ω – девіація частоти. Звідси значення коефіцієнта частотної модуляції: mFM=(ωН Ω)/Ω 

У загальному вигляді спектр складається з центральної гармоніки на частоті ωн й бокових смуг гармонік, рознесених одна відносно одної на величину Ω. Амплітуди бокових гармонік не є монотонно спадними й пов'язані складним чином з коефіцієнтом фазової модуляції тфм=(φН – φ0 )/φ0 .

Практичну  ж ширину спектру ЧМ-сигналу можна знайти за формулою:

Для ФМ повна фаза косинуса несучого коливання прямо пропорційна інформаційному сигналу:

Тут Um – амплітуда несучого коливання, Ω та φ0 – частота та фаза модулюючого сигналу, ωН та φН – частота та фаза несучого коливання, тφ= φН – φ0 – девіація фази .

Досліджуючи зміни частоти такою, що несе з ЧМ, є спокуса прийти до висновку про те, що ширина смуги, необхідної для ЧМ-ПЕРЕДАЧИ, складає ±н,  або , оскільки та, що несе міняється по частоті в межах ±н, тобто чмн±н.Этот вивід, проте, повністю помилковий. Може бути показано, що ЧМ-КОЛЕБАНІЯ складаються з тієї, що несе і бічних смуг аналогічно AM з однією лише істотною відмінністю: при ЧМ існує безліч бічних смуг (мал. 5). Амплітуди бічних смуг зв'язані вельми складним чином з індексом модуляції. Відзначимо, що частоти бічних смуг пов'язані лише з частотою модулюючого сигналу м, а не з девіацією частоти н. Для попереднього прикладу, коли =5 і м=15 кГц (максимум), ми отримуємо сім пар смуг (н±м, н±2м, н±3м, і так далі) з амплітудами, що змінюються, але що перевищують значення 0,04Ан. Всі інші пари за межами н±7м мають амплітуди нижче за рівень 0,02Ан.

Перша пара бічних смуг може бути описана як 0,33А[sin(н+м)t+sin(н-м)t] має амплітуду 0,33 Ан; друга пара - н2м - має амплітуду 0,047Ан. Відзначимо, що амплітуди різних бічних смуг не є такими, що монотонно убувають у міру того, як їх частоти все більш і більш віддаляються від н. Фактично в приведеному прикладі з =5 найбільшою по амплітуді (0,4 Ан) є четверта пара бічних смуг. Амплітуди різних бічних смуг отримані із спеціальних таблиць, що описують ці смуги для різних значень . Очевидно, що ширина смуги, необхідна для передачі семи пар бічних смуг, складає ±715 кГц, або 1415 кГц= 210 кГц (для fм=15 кГц). На цьому ж підставі ширина смуги, необхідна для =10 (н/м=10), рівна 26fм; 13 бічних смуг в цьому випадку складуть 2615=390 кГц. Таким чином, частотна модуляція вимагає значної ширини смуги частот і, як наслідок, використовується тільки при тих, що несуть з частотами 100 Мгц і вище.

У випадку ФМ за законом інформаційного сигналу змінюється фаза несучого коливання.

У загальному вигляді спектр складається з центральної гармоніки на частоті ωн й бокових смуг гармонік, рознесених одна відносно одної на величину Ω. Амплітуди бокових гармонік не є монотонно спадними й пов'язані складним чином з коефіцієнтом фазової модуляції тРМ=(φН – φ0 )/φ0 .

Практичну  ж ширину спектру ФМ-сигналу можна знайти за формулою:

Завдання (АМ):

  1.  Изменяя коэффициент модуляции блока Complex в схеме на рис
    убедитесь в справедливости формулы
  2.  Рассчитайте значения ph для модулятора при различных значениях  полученные, результаты проверьте моделированием. Аналогичные операции проделайте применительно к формулам. Путем моделирования установите зависимость соотношения между интенсивностями несущей и боковых частот от коэффициента модуляции. Для отсчета увеличьте (стандартным образом) размер графопостроителя  по вертикали и горизонтали.
  3.  Снимите спектр АМ - сигнала после исключения из схемы квантователя и сравните полученные результаты с приведенными на рис. 5.1.
  4.  Установите зависимость формы спектра и временного смещения восстановленного. AM колебания относительно модулирующего (на выходе Кв) от времени моделирования путем увеличения параметра Impulse Time источника Impulse.
  5.  Проведите испытания амплитудных модуляторов на рис. 5.1 в узкополосном режиме (при Fc = 0). Сравните спектры модулированных сигналов с показанными на рис. 5.1.


1) На малюнку, наведеному нижче значення коефіцієнта модуляції М встановлено в 1. Згідно формули, наведеної в завданні, максимальне значення амплітуди модульованого сигналу має вдвічі перевищувати амплітуду несучого, що й доводить малюнок.

На даному малюнку встановлено нульовий коефіцієнт модуляції. При цьому, як і слід було очікувати, модульований сигнал має форму гармонічної несучої.

2) Розрахуємо значення фази сигналу на виході модулятора згідно формули: 

При значенні початкової фази φ=90 градусів та лінійної частоти f=2 Гц, матимемо:

При значенні початкової фази φ=180 градусів та лінійної частоти f=1 Гц, матимемо:

3) На наступній схемі в коло включений елемент квантування з кроком квантування 0,1 с.

На даній схемі цей елемент відсутній

4) Зміна часу моделювання не вносить жодних змін у вигляд частотного спектру сигналу. Про зсув по осі часу вихідного сигналу відносно відтвореного можна сказати, що із зміною часу моделювання зсув не спостерігається, проте із його збільшенням межі відображення графіків зменшуються.

5) Якщо встановити частоту несучого коливання нульовою, то модульований сигнал на буде вигляду:

Якщо врахувати, що коефіцієнт модуляції дорівнює  одиниці, то модульований сигнал підніметься відносно несучої на значення її амплітуди.


Завдання (ЧМ):

  1.  Какими   параметрами   определяются   характеристики   частотных модуляторов. Исследуйте зависимость формы спектра ЧМ сигнала от амплитуды модулирующего сигнала (0,1 и 0,3 В) и индекса модуляции. Проведите cpaвнительный анализ полученных результатов.
  2.  Путем моделирования установите зависимость составляющих комплексного сигнала модуляторов Complex от начальной фазы несущей (0, 30, 60, 90,120,150,180°). Для каждого случая напишите выражение для комплексного сигнала потенциальной и тригонометрической форме.

1) Основні параметри, які визначають характеристики частотних модуляторів наступні:

- частотний коефіцієнт модуляції М, якмий визначається як відношення відхилення частот несучої та модулюючого коливання, до частоти модулюючого коливання;

-  амплітуда несучої.

Змінюючи дані параметри, спостерігатимемо за змінами с в частотному спектрі тва часовій формі модульованих сигналів.

А) М=1, амплітуда – 1 В.


Б) М=3, амплітуда – 1 В.

В) М=3, амплітуда – 0,3 В.

2) Нижче наведені значення параметрів сигналу на виході комплексного модулятора в співвідношенні з початковою фазою несучої:

0    30    60    90 120    150    180


Завдання (ФМ)

Розглянемо зміни, які вносяться в частотний спектр та вигляд промодульованого коливання зі зміною коефіцієнта модуляції.

М=7

М=5

М=2


 

А также другие работы, которые могут Вас заинтересовать

65583. РОЗВИТОК ТЕОРІЇ І МЕТОДІВ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ РЕЖИМІВ РОБОТИ ЕЛЕКТРИЧНИХ СИСТЕМ З НЕСИМЕТРІЄЮ 843 KB
  Розв’язання таких задач принципово можливо на основі переходу до математичних моделей, що використовують рівняння у фазних координатах. Перейти до більш повних і точних моделей на основі рівнянь у фазних координатах, що враховують електромагнітний і електростатичний...
65584. РОЗВИТОК У КЕРІВНИКІВ ОПЕРАТИВНО-РОЗШУКОВИХ ПІДРОЗДІЛІВ ДЕРЖАВНОЇ ПРИКОРДОННОЇ СЛУЖБИ УКРАЇНИ ЗДАТНОСТІ ДО САМОРЕГУЛЯЦІЇ ПСИХІЧНОЇ СТІЙКОСТІ В ЕКСТРЕМАЛЬНИХ УМОВАХ 235 KB
  За оцінкою експертів у рейтингу якостей керівника ОРП ДПСУ найважливішою є здатність до саморегуляції в екстремальних умовах професійної діяльності. З огляду на це керівник ОРП повинен бути емоційно стриманим уміти контролювати себе тобто мати високий рівень саморегуляції...
65585. СТРУКТУРА ТА МЕХАНІЧНІ ВЛАСТИВОСТІ БАГАТОШАРОВИХ КОМПОЗИТІВ МІДЬ –ТАНТАЛ, ОТРИМАНИХ МЕТОДОМ ДИФУЗІЙНОГО ЗВАРЮВАННЯ 457.5 KB
  Для досягнення поставленої мети виникла необхідність у вирішенні таких основних задач: вибір металу проміжного між міддю та танталом шару та методів виготовлення мідних та проміжних шарів; встановлення технологічних параметрів дифузійного зварювання які забезпечували б надійний адгезійний...
65586. Діагностика процесу чистового шліфування по динаміці зміни вихідних змінних 454.5 KB
  Вирішення перелічених завдань має особливе значення для операцій шліфування при виконанні яких на якість і продуктивність впливають збурюючи дії і зміни параметрів технологічної системи. Операція настроюється на найгірший стан системи і середовища.
65587. Багатофункціональні сонячні системи тепло-холодопостачання і кондиціювання повітря 402.5 KB
  Метою роботи є вдосконалення багатофункціональних сонячних систем тепло холодопостачання і кондиціювання повітря на основі осушувальновипарних методів і сонячної енергії для підтримки безперервності циклу.
65588. ТВОРЧІСТЬ ЗЕНОВІЯ КРАСІВСЬКОГО ТА ЯРОСЛАВА ЛЕСІВА: ДИСКУРС НАЦІОНАЛЬНОЇ ІДЕНТИЧНОСТІ 172 KB
  Простежити діахронію розуміння України Батьківщини дому рідної мови свободи Бога в життєвому та літературному досвіді обох письменників; зясувати жанровотематичні параметри творчості...
65589. МОДУЛЯЦІЯ ГЛІЦИНОВИХ РЕЦЕПТОРІВ КАНАБІНОЇДАМИ В НЕЙРОНАХ ЦНС ЩУРІВ 724 KB
  Мета роботи полягала у вивченні впливу канабіноїдів на електрофізіологічні характеристики гліцин-активованого струму, та функціональне значення такого впливу на мережеву нейронну активність в гіпокампі.
65590. Розроблення основ технологій формування карбонітридних та карбооксидних термодифузійних покриттів на титанових сплавах 4.27 MB
  Проте деякі особливості притаманні титану обмежують його застосування в якості конструкційного матеріалу. Тому експлуатація в умовах складних навантажень та впливу агресивних середовищ яка висуває підвищені вимоги до фізикохімічних властивостей робочих поверхонь вимагає додаткової обробки титану.
65591. РОЗВИТОК МОВЛЕННЄВИХ ЗДІБНОСТЕЙ ДОШКІЛЬНИКІВ У РІЗНОМУ СОЦІОКУЛЬТУРНОМУ ОТОЧЕННІ 265.5 KB
  У звязку з цим особливої актуальності набуває проблема розвитку мовленнєвих здібностей дошкільників у різному соціокультурному оточенні. Щерба мовлення дітей та їх цілеспрямованого навчання у процесі розвитку мовленнєвих здібностей А. Щерба окремих сторін мовлення дитини та комплексного розвитку...