17562

Дослідження методів функціонування модуляторів та демодуляторів

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №1 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Дослідження методів функціонування модуляторів та демодуляторів Мета: Вивчити особливості функціювання різноманітних модуляторів та демодуляторів. Теоретичні відомості В зага...

Украинкский

2013-07-04

605.5 KB

3 чел.

Лабораторна робота №1

з дисципліни: «Автоматизоване проектування ТЗЗІ»

Тема: «Дослідження методів функціонування модуляторів та демодуляторів»

Мета: Вивчити особливості функціювання різноманітних модуляторів та демодуляторів.

Теоретичні відомості

В загальному випадку несуче коливання можна представити аналітично:

В цьому виразі амплітуда А(t), фаза φ(t) та частота ω(t) змінюються згідно закону інформаційного сигналу, що передається каналом зв'язку. В залежності від того, який саме параметр змінюється розрізняють, відповідно, амплітудну (АМ), фазову (ФМ) та частотну (ЧМ) модуляції.

При АМ амплітуда несучого коливання являється функцією часу:

А0 – постійна складова, що дорівнює середньому значенню амплітуди несучого коливання: А0=(Аminmax)/2 , де Аmin та Аmax  - мінімальна та максимальна амплітуди несучого коливання, а F(t) – функція часу, підпорядкована тому ж закону, що й інформаційний сигнал – модуляційна функція.

Тут Т0 – період модулюючого сигналу, ТН – період несучого коливання.

У випадку, коли модуляційна функція являє собою гармонічне коливання F(t)=Mcos(Ωt+φ0), аналітичний вигляд коливання для однотональної АМ:

Тут М=ΔА/A0 – коефіцієнт модуляції, який характеризує глибину модуляції, ΔА=Amax-A0 – девіація амплітуди, Amax – максимальне значення амплітуди несучого коливання, Ω та φ0 – частота та фаза модулюючого сигналу, ωН та φН – частота та фаза несучого коливання.

Спектр сигналу для однотональної АМ (рис. 4.1.2) має три складові: центральну, розташовану на частоті ωН та дві бокові, симетричні відносно центральної на Ω.

Для ЧМ за законом інформаційного сигналу змінюється частота несучого коливання. Повна фаза косинуса несучого коливання прямопропорційна інтегралу від інформаційного сигналу:

Тут Δω=ωН – Ω – девіація частоти. Звідси значення коефіцієнта частотної модуляції: mFM=(ωН Ω)/Ω 

У загальному вигляді спектр складається з центральної гармоніки на частоті ωн й бокових смуг гармонік, рознесених одна відносно одної на величину Ω. Амплітуди бокових гармонік не є монотонно спадними й пов'язані складним чином з коефіцієнтом фазової модуляції тфм=(φН – φ0 )/φ0 .

Практичну  ж ширину спектру ЧМ-сигналу можна знайти за формулою:

Для ФМ повна фаза косинуса несучого коливання прямо пропорційна інформаційному сигналу:

Тут Um – амплітуда несучого коливання, Ω та φ0 – частота та фаза модулюючого сигналу, ωН та φН – частота та фаза несучого коливання, тφ= φН – φ0 – девіація фази .

Досліджуючи зміни частоти такою, що несе з ЧМ, є спокуса прийти до висновку про те, що ширина смуги, необхідної для ЧМ-ПЕРЕДАЧИ, складає ±н,  або , оскільки та, що несе міняється по частоті в межах ±н, тобто чмн±н.Этот вивід, проте, повністю помилковий. Може бути показано, що ЧМ-КОЛЕБАНІЯ складаються з тієї, що несе і бічних смуг аналогічно AM з однією лише істотною відмінністю: при ЧМ існує безліч бічних смуг (мал. 5). Амплітуди бічних смуг зв'язані вельми складним чином з індексом модуляції. Відзначимо, що частоти бічних смуг пов'язані лише з частотою модулюючого сигналу м, а не з девіацією частоти н. Для попереднього прикладу, коли =5 і м=15 кГц (максимум), ми отримуємо сім пар смуг (н±м, н±2м, н±3м, і так далі) з амплітудами, що змінюються, але що перевищують значення 0,04Ан. Всі інші пари за межами н±7м мають амплітуди нижче за рівень 0,02Ан.

Перша пара бічних смуг може бути описана як 0,33А[sin(н+м)t+sin(н-м)t] має амплітуду 0,33 Ан; друга пара - н2м - має амплітуду 0,047Ан. Відзначимо, що амплітуди різних бічних смуг не є такими, що монотонно убувають у міру того, як їх частоти все більш і більш віддаляються від н. Фактично в приведеному прикладі з =5 найбільшою по амплітуді (0,4 Ан) є четверта пара бічних смуг. Амплітуди різних бічних смуг отримані із спеціальних таблиць, що описують ці смуги для різних значень . Очевидно, що ширина смуги, необхідна для передачі семи пар бічних смуг, складає ±715 кГц, або 1415 кГц= 210 кГц (для fм=15 кГц). На цьому ж підставі ширина смуги, необхідна для =10 (н/м=10), рівна 26fм; 13 бічних смуг в цьому випадку складуть 2615=390 кГц. Таким чином, частотна модуляція вимагає значної ширини смуги частот і, як наслідок, використовується тільки при тих, що несуть з частотами 100 Мгц і вище.

У випадку ФМ за законом інформаційного сигналу змінюється фаза несучого коливання.

У загальному вигляді спектр складається з центральної гармоніки на частоті ωн й бокових смуг гармонік, рознесених одна відносно одної на величину Ω. Амплітуди бокових гармонік не є монотонно спадними й пов'язані складним чином з коефіцієнтом фазової модуляції тРМ=(φН – φ0 )/φ0 .

Практичну  ж ширину спектру ФМ-сигналу можна знайти за формулою:

Завдання (АМ):

  1.  Изменяя коэффициент модуляции блока Complex в схеме на рис
    убедитесь в справедливости формулы
  2.  Рассчитайте значения ph для модулятора при различных значениях  полученные, результаты проверьте моделированием. Аналогичные операции проделайте применительно к формулам. Путем моделирования установите зависимость соотношения между интенсивностями несущей и боковых частот от коэффициента модуляции. Для отсчета увеличьте (стандартным образом) размер графопостроителя  по вертикали и горизонтали.
  3.  Снимите спектр АМ - сигнала после исключения из схемы квантователя и сравните полученные результаты с приведенными на рис. 5.1.
  4.  Установите зависимость формы спектра и временного смещения восстановленного. AM колебания относительно модулирующего (на выходе Кв) от времени моделирования путем увеличения параметра Impulse Time источника Impulse.
  5.  Проведите испытания амплитудных модуляторов на рис. 5.1 в узкополосном режиме (при Fc = 0). Сравните спектры модулированных сигналов с показанными на рис. 5.1.


1) На малюнку, наведеному нижче значення коефіцієнта модуляції М встановлено в 1. Згідно формули, наведеної в завданні, максимальне значення амплітуди модульованого сигналу має вдвічі перевищувати амплітуду несучого, що й доводить малюнок.

На даному малюнку встановлено нульовий коефіцієнт модуляції. При цьому, як і слід було очікувати, модульований сигнал має форму гармонічної несучої.

2) Розрахуємо значення фази сигналу на виході модулятора згідно формули: 

При значенні початкової фази φ=90 градусів та лінійної частоти f=2 Гц, матимемо:

При значенні початкової фази φ=180 градусів та лінійної частоти f=1 Гц, матимемо:

3) На наступній схемі в коло включений елемент квантування з кроком квантування 0,1 с.

На даній схемі цей елемент відсутній

4) Зміна часу моделювання не вносить жодних змін у вигляд частотного спектру сигналу. Про зсув по осі часу вихідного сигналу відносно відтвореного можна сказати, що із зміною часу моделювання зсув не спостерігається, проте із його збільшенням межі відображення графіків зменшуються.

5) Якщо встановити частоту несучого коливання нульовою, то модульований сигнал на буде вигляду:

Якщо врахувати, що коефіцієнт модуляції дорівнює  одиниці, то модульований сигнал підніметься відносно несучої на значення її амплітуди.


Завдання (ЧМ):

  1.  Какими   параметрами   определяются   характеристики   частотных модуляторов. Исследуйте зависимость формы спектра ЧМ сигнала от амплитуды модулирующего сигнала (0,1 и 0,3 В) и индекса модуляции. Проведите cpaвнительный анализ полученных результатов.
  2.  Путем моделирования установите зависимость составляющих комплексного сигнала модуляторов Complex от начальной фазы несущей (0, 30, 60, 90,120,150,180°). Для каждого случая напишите выражение для комплексного сигнала потенциальной и тригонометрической форме.

1) Основні параметри, які визначають характеристики частотних модуляторів наступні:

- частотний коефіцієнт модуляції М, якмий визначається як відношення відхилення частот несучої та модулюючого коливання, до частоти модулюючого коливання;

-  амплітуда несучої.

Змінюючи дані параметри, спостерігатимемо за змінами с в частотному спектрі тва часовій формі модульованих сигналів.

А) М=1, амплітуда – 1 В.


Б) М=3, амплітуда – 1 В.

В) М=3, амплітуда – 0,3 В.

2) Нижче наведені значення параметрів сигналу на виході комплексного модулятора в співвідношенні з початковою фазою несучої:

0    30    60    90 120    150    180


Завдання (ФМ)

Розглянемо зміни, які вносяться в частотний спектр та вигляд промодульованого коливання зі зміною коефіцієнта модуляції.

М=7

М=5

М=2


 

А также другие работы, которые могут Вас заинтересовать

21298. Моделювання за допомогою методу Баркера 243 KB
  З їх допомогою визначаються важливі для предметної області об'єкти сутності їх властивості атрибути і відношення один з одним зв'язки. Графічне зображення сутності Кожна сутність повинна мати унікальний ідентифікатор. Кожен екземпляр сутності повинен однозначно ідентифікуватися і відрізнятися від всіх інших примірників даного типу сутності. Одна і та ж інтерпретація не може застосовуватися до різних імен якщо тільки вони не є псевдонімами; володіє одним або декількома атрибутами які або належать сутності або успадковуються через...
21299. Діаграми класів 160.5 KB
  При цьому можливе використання графічних зображень для асоціацій та їх специфічних властивостей таких як відношення агрегації коли складовими частинами класу можуть виступати інші класи. У цих розділах можуть зазначатися ім'я класу атрибути змінні та операції методи.1 Графічне зображення класу на діаграмі класів Обов'язковим елементом позначення класу є його ім'я. На початкових етапах розробки діаграми окремі класи можуть позначатися простим прямокутником із зазначенням тільки імені відповідного класу рис.
21300. Технології та інструментальні засоби проектування 62.5 KB
  Інструментальні засоби моделювання та проектування інформаційних систем Технології та інструментальні засоби проектування Технології та інструментальні засоби проектування CASEзасоби Computer Aided System Engineering складають основу проекту будьякої інформаційної системи. Методологія реалізується через конкретні технології та підтримують їх стандарти методики та інструментальні засоби які забезпечують виконання процесів життєвого циклу. Особливостями сучасних CASEзасобів є наочні графічні інструменти для створення моделей...
21301. Основы проектирования операционной части АЛУ 273.5 KB
  Рассмотрим все возможные комбинации знаков чисел и действий и сделаем ряд преобразований так чтобы знак результата совпадал со знаком первого операнда: 1. При отсутствии переноса из старшего разряда для представления результата в прямом коде все разряды результата включая знаковый инвертируется и к младшему разряду прибавляется единица. В блок схеме используются два типа блоков: Блоки выполнения действия над значениями исходных переменных с присваиванием результата новым переменным или одной из старых. В минимальном варианте операционная...
21302. Параллельная обработка данных 233.21 KB
  Автоматическое обнаружение параллелизма. Степень и уровни параллелизма. Виды параллелизма. Производительность параллельных ВС зависит от многих факторов и в значительной степени от архитектуры и структуры системы рисовать структуру параллельной системы и объяснять: от степени и уровня параллелизма в системе; от организации передачи данных между параллельно работающими процессорами; от системы коммутации; от взаимодействия процессоров и памяти; от соотношения между аппаратной и программной реализацией макрооперации.
21303. Структурная организация систем обработки данных 156.5 KB
  Организация систем вводавывода. Структура и функции системы вводавывода. Канал вводавывода. Способы организации системы вводаввода.
21304. Уровни комплексирования устройств в вычислительных системах 78.5 KB
  1: 1 прямого управления процессор – процессор; 2 общей оперативной памяти; 3 комплексируемых каналов вводавывода; 4 устройств управления внешними устройствами УВУ; 5 общих внешних устройств. Уровень прямого управления служит для передачи коротких однобайтных приказовсообщений. Процессоринициатор обмена по интерфейсу прямого управления ИПУ передает в блок прямого управления байтсообщение и подает команду Прямая запись. Уровень прямого управления не может использоваться для передачи больших массивов данных.
21305. Системы анализа защищенности корпоративной сети (обнаружения уязвимостей) на примере продуктов: Microsoft Baseline Security Analyzer и XSpider 527.5 KB
  Лекция: Системы анализа защищенности корпоративной сети обнаружения уязвимостей на примере продуктов: Microsoft Baseline Security Analyzer и XSpider От эффективности защиты операционных систем напрямую зависит уровень безопасности сетевой инфраструктуры организации в целом. В данной лекции мы познакомимся с такими программными средствами для анализа защищенности ОС как Microsoft Baseline Security Analyzer и сканер безопасности XSpider 7. На этом занятии будут рассмотрены программные средства для анализа защищенности операционных систем...
21306. Обеспечение безопасности хранения данных в ОС Microsoft 543 KB
  Для изменения настроек теневых копий тома отличных от заданных по умолчанию выберите нужный том из списка и нажмите кнопку Параметры рис 3. Окно настройки параметров теневого копирования тома Если вы решили изменить расписание создания теневых копий нажмите кнопку Расписание : появится окно представленное на рис. Окно настройки расписания теневого копирования тома После выполненных настроек нажмите кнопку Включить начнут создаваться теневые копии общих папок на заданном томе. Нажмите ссылку Расширенный режим а затем перейдите на...