17565

Ущільнення та розділення каналів

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №5 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Ущільнення та розділення каналів Дифференциальное разделение каналов На передающей стороне используется дифференциальный трансформатор Т1 а на приемной такой же по конструкци

Украинкский

2013-07-04

232.5 KB

1 чел.

Лабораторна робота №5

з дисципліни: «Автоматизоване проектування ТЗЗІ»

Тема: «Ущільнення та розділення каналів»

Дифференциальное разделение каналов

На передающей стороне используется дифференциальный трансформатор Т1, а на приемной – такой же по конструкции Т2. Источник сигнала U1 частотой 50 Гц первого канала подключается к первичной обмотке Т1, источник U2 частотой 100 Гц второго канала – между средней точкой вторичной обмотки Т1 и общей шиной (землей). На приемной стороне такой же трансформатор Т2 подключается к линии связи LS в «перевернутом» виде, поскольку теперь уже первичная обмотка имеет отвод от своей середины, с которого снимается сигнал второго канала (регистрируется в канале А осциллографа); сигнал первого канала при этом снимается со вторичной обмотки Т2 (канал В осциллографа). Как видно из осциллограмм на рис. 6.1, б, сигналы передаются в приемник получателя без искажений. Отсутствие взаимного влияния каналов объясняется тем, что для сигнала второго канала (100 Гц) полуобмотки трансформаторов включены встречно, т. е. магнитные потоки от протекающих по этим полуобмоткам токов взаимно уничтожаются. По отношению же к первому каналу они включены согласно.

Частотное разделение

При таком разделении для различных каналов отводятся непересекающиеся участки на частотной шкале. Спектры сигналов и соответствующих каналов при этом должны укладываться в пределы полосы пропускания ЛС. Передающая сторона представлена двумя источниками несущих сигналов частотой 7 и 10 Гц, которые могут быть промоделированы информационными сигналами, и сумматором Сум1, а приемная сторона – двумя полосовыми фильтрами Bandpass FIR с центральной частотой 7 Гц для первого канала и 10 Гц для второго при полосе пропускания 2 Гц (определяется параметрами Cutoff Freq 1 и Cutoff Freq 2, значения которых индицируются на значке блока). Получателем на приемной стороне является плоттер, осциллограммы которого отображают, если не учитывать переходные процессы в фильтрах, приятые сигналы, а также сигнал Сум на входе приемника. Заметим, что, как и ранее, сумматоры Сум2, Сум1 и источники Cl, C2 используются для смещения осциллограмм каналов.

Временное разделение

При временном разделении несущие сигналы отдельных каналов передаются только в отведенные для них непересекающиеся отрезки времени, которые задаются коммутаторами-распределителями. На демонстрационной схеме такие распределители представлены ключами S1t, S2t на передающей стороне и S1r, S2r – на приемной. Ключи управляются противофазными источниками Ult, U2t на передающей стороне и синхронизированными с ними U1s, U2s – на приемной. Поскольку напряжения срабатывания ключей выбраны достаточно низкими (0,1 В), то практически в течение всего положительного полупериода U1t и U1r ключи S1t и S1r открыты (с небольшим «защитным» интервалом, обусловленным порогом срабатывания 0,1 В). При этом на первый вход U1d сумматора на операционном усилителе (ОУ) 1 поступает очередная выборка сигнала первого канала U1. С выхода сумматора Us  он через линию связи и ключ S1r поступает на низкочастотный R1fC1f-фильтр первого канала . В течение положительного полупериода U2t и U2r, следующего непосредственно за рассмотренным (вследствие противофазности напряжений источников управления), открытыми оказываются ключи S1t и S1r, в результате чего очередная выборка сигнала U2 второго канала через сумматор и ЛС поступает на низкочастотный R2fС2f-фильтр второго канала.

Фазовое разделение

Такое разделение применяют в двухканальной системе с несущими синусоидальными сигналами U1, U2, амплитуды которых могут быть промодулированы информационными сигналами, а фазы различаются на 90°, т. е.  и , и на выходе сумматора на ОУ 1 (в линии связи LS) будем иметь линейную комбинацию . На приемной стороне сигналы разделяются с помощью двух фазовых двухполупериодных детекторов, выполненных на двух дифференциальных усилителях (ОУ 2 и 3), управляемых ключами S1 и S2, которые, в свою очередь, управляются источниками напряжений U1s и U2s, синхронизированными с U1, U2 и также сдвинутыми по фазе на 90°.

На выходе детекторов из композитного сигнала  выделяются , , средние значения которых за два полупериода (выпрямление двухполупериодное!) соответственно равны  и , что и регистрируется подключенными, к выходам ОУ вольтметрами. Множитель  определяет амплитудные значения U1(t) и U2(t).

Кодовое разделение

При кодовом (адресном) разделении адрес нужного канала указывается кодированным сигналом, посылаемым в линию связи. Разделение на приемной стороне осуществляется декодирующим устройством, направляющим сообщения по выбранному каналу. Код адреса может быть как последовательным, так и параллельным. В последнем случае используется отдельная линия связи или индивидуальный канал на каждый разряд кода. Кодовое разделение каналов позволяет производить опрос каналов в произвольном порядке с заданным приоритетом, что важно, например, в системах автоматического управления, в которых отдельные датчики контроля могут опрашиваться с различной частотой

Схема, иллюстрирующая принцип кодового разделения каналов, содержит источники входных (канальных) сигналов U0–U1, формирователь адреса (источник тактовых сигналов Ut, двухразрядный счетчик на Т1 и Т2, дешифратор на логических элементах НЕ U1, U2 и трехвходовых элементах И U3–U6), мультиплексор (элементы И U7–U10 и ИЛИ U11), ЛС и демультиплексор на элементах И U12–U15. Работа адресного устройства и демультиплексора индицируется логическими пробниками 0-4. В практических конструкциях формирователь адреса должен быть как на передающей, так и приемной стороне. Естественно, что их работа должна быть строго синхронизированной.

В исходном состоянии триггеры счетчика находятся в нулевом состоянии (код адреса 00 на выходах ). При этом сигнал логической 1 на выходе 0 дешифратора деблокирует элементы И U7 на приемной и U12 на передающей стороне и сигналы с частотой 2 Гц (условный код 11 информационного сигнала) через ИЛИ U11 и ЛС LS поступают на выход 0 демультиплексора приемника.

Поскольку при длительности развертки осциллографа 0,5 с/дел и количестве делений 14 время регистрации составляет 7 с, то на его экране мы увидим две посылки кода 11, сопровождающиеся короткой импульсной помехой, вызванной временной несогласованностью логических элементов Из осциллограммы Us можно видеть положение посылок источника U0 в композитном сигнале в ЛС LS.

При поступлении на счетчик первого импульса Ut на его выходах формируется код адреса 01, в результате чего код 111 источника U1 передается на выход 1 демультиплексора приемника, при втором импульсе Ut формируется код адреса 10 и код 1111 источника U2 передается на выход 2 демультиплексора, при третьем импульсе формируется код адреса 11 и на выход 3 демультиплексора передается код 11111 источника U2.

Разделение каналов по уровню

В системах с разделением по уровню параметром разделения служит амплитуда сигналов, а полезная информация может содержаться, например, в их длительности.

В качестве примера рассмотрим двухканальную систему, содержащую на передающей стороне два источника однополярных импульсных сигналов амплитудой  В,  В и коэффициентом заполнения 70 и 20 % (осциллограмма на рис. 6.6, б), т. е. тем самым констатируется факт модуляции переднего фронта импульсов. Оба сигнала, линейно складываясь в сумматоре S1, образуют композитный сигнал , поступающий в ЛС. На приемной стороне с помощью диодного ограничителя (резистор , диод  и источник постоянного напряжения ) формируется напряжение  ( – падение напряжения на открытом диоде), которое в сумматоре S2 за счет выбора коэффициента передачи по входу   вычитается из , в результате чего на его выходе формируется напряжение  (см. осциллограмму на рис. 6.6, в, которая получается при переводе сдвоенного ключа  одноименной клавишей клавиатуры). Для выделения U1r необходимо, очевидно, выполнить операцию , которая осуществляется сумматором S3 при . Из осциллограммы на рис. 6.6, в видно, что вершина U1r несколько искажена вследствие ошибок формирования сигнала Ub на выходе диодного ограничителя и последующей операции вычитания в сумматоре S2.

Увеличение числа каналов рассматриваемой системы достигается увеличением числа диодных ограничителей, схем вычитания и ограничивается их точностью и стабильностью.


 

А также другие работы, которые могут Вас заинтересовать

20937. Модификация структур баз данных, формирование SQL- запро-сов и VB-функций, настройка фильтрации данных в системе Вертикаль-Справочник 4.43 MB
  Цели и задачи: Изучить методику модификации структур баз данных порядок формирование SQL запросов и VBфункций настройку фильтрации данных в системе ВертикальСправочник. После занятия студент должен: Знать: Как отредактировать структуру баз данных и состав таблиц сформировать пользовательские SQLзапросы как настроить фильтрацию данных по различным признакам . Уметь: Подключить несколько таблиц к одному уровню сформировать пользовательские VBфункции настроить фильтрацию данных по различным признакам .
20938. Защита данных, организация вычислений по формулам, синхронизация серверных баз данных в системе Вертикаль-Справочник 4.58 MB
  Цели и задачи: Изучить методы защиты данных организацию вычислений по формулам синхронизацию серверных баз данных в системе ВертикальСправочник. После занятия студент должен: Знать: Методы защиты данных организацию вычислений по формулам синхронизацию серверных баз данных в системе ВертикальСправочник. Проработать теоретический материал по теме: Проектирование реляционной структуры пользовательских баз данных ВертикальСправочник.
20939. Проектирование объектной структуры пользовательских баз данных в системе Вертикаль-Справочник 2.93 MB
  После занятия студент должен: Знать: Принципы в структуре баз данных системы порядок регистрации нового класса объектов порядок настройки связи между объектами. Уметь: Выполнить регистрацию нового класса объектов настроить связи между объектами редактировать атрибуты связей объектов.3 [2] лекция №11 Индивидуальное задание: Выполнить регистрацию нового класса объектов настроить связи между объектами редактировать атрибуты связей объектов. Какой порядок регистрации нового класса объектов 3.
20940. Проектирование реляционной структуры пользовательских баз данных Вертикаль-Справочник 4.45 MB
  Цели и задачи: Изучить реляционные и объектные составляющие баз данных каталог баз данных редактор навигационных схем. После занятия студент должен: Знать: Общие сведения о каталоге баз данных как проектируются навигационные системы . Уметь: Заригистрировать новые базы данных настроить атрибуты связей объектов навигационной схемы.
20941. Редактор структуры данных, настройка основного и контекст-ного меню в системе Вертикаль-Справочник 3.79 MB
  Цели и задачи: Изучить редактор структуры данных настройку основного и контекстного меню в системе ВертикальСправочник После занятия студент должен: Знать: Порядок формирования структуры данных таблицы процедуры настройки основного меню методику присоединение списков к базе данных порядок подключения коментариев к таблицам базы данных и порядок подключения коментариев к таблицам баз данных . Уметь: Создать несколько структур данных для таблиц зарегистрировать маркеры пунктов и переменных контекстного меню. Проработать теоретический...
20942. Шифрування та дешифрування даних за допомогою блокових алгоритмів 321.24 KB
  Програма дешифрування інформації (повернення початкового вигляду файла) а також оцінити правильність процедури шифрування – дешифрування (відсутність зміни результату відносно початкового файлу).
20943. Шифрування та дешифрування даних за допомогою потокових алгоритмів 51.15 KB
  Програма шифрування інформації з використанням визначених алгоритмів. У якості інформації використовувати копію файлу з розробленою програмою. програма дешифрування інформації (повернення початкового вигляду файла)...
20944. Створення програми для формування та перевірки повідомлень за допомогою електронно-цифрового підпису 48.9 KB
  czynniki pierwsze klucz zakryty p1 4 = 0 q1 4 = 0 p = 19; q = 23; n = pq; M = random n; print Message = M; print Cryptogram = C; C = M^2 n; m1= C ^ p1 4 p; m2= p C ^ p1 4 p; m3 = C ^ q1 4 q; m4 = q C ^ q1 4 q; fork=1p d=pk1 q; if floordda = qd;break;break;;; fork=1q d=qk1 p; if floorddb = pd;break;break;;; print Decryption = ; M1 = am1bm3 n M2 = am1bm4 n M3 = am2bm3 n M4 = am2bm4 n Результат виконання...
20945. Створення програми приховання повідомлення у графічному файлі за допомогою стеганографічних перетворень 69.4 KB
  h include iostream include string using namespace std int mainint argc char argv[] { HANDLE hFile hFileMess hFileCont; BYTE pdbFileByte pdbMessByte; const BYTE dbKeySize = 8; BYTE dbKey[dbKeySize]={4160824202832}; BYTE dbKey[dbKeySize]={12730546}; BYTE dbKey[dbKeySize]={01234567}; DWORD dwMessSizedwFileSizedwRealFiledwRealMess; DWORD dwOffsetPictdwPictSize; hFile = CreateFileargv[1]GENERIC_READFILE_SHARE_READNULLOPEN_EXISTING0NULL; dwFileSize = GetFileSizehFileNULL; pdbFileByte = new...