17566

Фільтри та пристрої синхронізації

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №8 з дисципліни: Автоматизоване проектування ТЗЗІ Тема: Фільтри та пристрої синхронізації Теоретическая часть Фильтры Фильтрами называют устройства обеспечивающие выделение из входного сигнала тех или иных временных time domain или часто...

Украинкский

2013-07-04

157 KB

0 чел.

Лабораторна робота №8

з дисципліни: «Автоматизоване проектування ТЗЗІ»

Тема: «Фільтри та пристрої синхронізації»

Теоретическая часть

Фильтры

Фильтрами называют устройства, обеспечивающие выделение из входного сигнала тех или иных временных (time domain) или частотных (frequency domain) составляющих.

В течение длительного времени, начиная с первых шагов развития, в электросвязи и радиотехнике широкое распространение получили аналоговые фильтры на основе индуктивных и емкостных элементов, а также электромеханических и пьезокерамических резонаторов. Такие элементы имеют большие габариты, достаточно сложную технологию изготовления и, в связи достижениями микроэлектроники, успешно заменяются цифровыми фильтрами, построенными на элементах временной задержки и цифровых блоках. Так, например, такие фильтры являются основой цифровых сигнальных процессоров, обеспечивающих резкое снижение стоимости и повышение качества фильтрации.

Цифровой фильтр – это фактически дискретно-временная система, преобразующая цифровой входной сигнал в модифицированный цифровой выходной. Математически он описывается системой дифференциальных уравнений, которая обычно представляется в конечно-разностном виде:

(7.1)

Это уравнение представляет отношение между -м отсчетом выходного сигнала,  предыдущими и  последующими значениями отсчетов входного сигнала .

Фильтры могут задаваться также передаточными характеристиками. Например, если уравнение дискретного фильтра класса time domain задано в виде , то он может быть создан как в виде устройства с отдельными блоками, так и в виде блока с передаточной функцией .

Согласно дуальности (двойственности) понятий времени и частоты, временные и частотные фильтры могут быть преобразованы друг в друга. Наиболее распространены частотные фильтры, характеризующиеся АЧХ, ФЧХ характеристиками и реализованными в них математическими функциями. По виду АЧХ фильтры делятся на Low Pass – низкочастотные (ФНЧ); High Pass – высокочастотные (ФНЧ); Band Pass – полосовые (ПФ); Stop Pass – полосовые заградительные (ЗФ) фильтры. По используемым математическим функциям фильтры делятся на фильтры Баттерворта (Butterworth), Бесселя (Bessel), Чебышева (Chebyshev) и др.

Фильтр Бесселя обеспечивает одинаковую временную задержку сигналов всех частот, максимально плоскую АЧХ (без колебаний в полосе пропускания и задержки) и потому часто используется для частотной селекции. Фильтр не искажает сигнал, спектр которого лежит в пределах полосы пропускания, однако переходная характеристика этого фильтра имеет небольшое перерегулирование (выброс).

Фильтр Баттерворта имеет максимально плоскую АЧХ, что делает его предпочтительным для частотной селекции; все производные фильтра от первой до ()-й равны нулю. Нормированная АЧХ такого фильтра -го порядка задается аппроксимацией: , где  – нормированная частота (относительно частоты среза ).

Фильтры Чебышева (прямой и инверсный) обеспечивают максимальное подавление сигнала в области частот выше частоты среза. Они имеют колебательную АЧХ, но эти колебания одинаковы по уровню. Наилучшей для этих фильтров считается следующая аппроксимация: , где  – коэффициент, определяющий неравномерность АЧХ в полосе пропускания;  – полином Чебышева первого рода -го порядка. В полосе пропускания подкоренное выражение колеблется между 1 и .

Рассматриваемые в VisSim цифровые фильтры делятся на два больших класса:

IIR (Infinity Impulse Response) – рекурсивные фильтры с бесконечной импульсной характеристикой;

FIR (Finite Impulse Response) – нерекурсивные фильтры с конечной импульсной характеристикой, для которых в формуле (7.1) все .

Устройства синхронизации

Вопросы синхронизации наиболее остро стоят в синхронных системах передачи информации. Для надежного выделения на приемной стороне синхроимпульсов используются различные методы, включая и специальное кодирование (см разд. 4 6). На рис 7.18 показаны некоторые схемы аппаратной поддержки синхронизации приемников, на всех схемах выходной сигнал снимается с зажима U0, а выделенный тем или иным образом синхроимпульс подается на зажим U1.

Рис. 7.18. Схемы фазировки синхросигналов в приемнике

В схеме на рис 7.18,а выделенный в приемнике из информационной последовательности сигнал синхронизации поступает на вход  фазового детектора PhDet, а на его другой вход  – сигналы тактового генератора Osc. Если эти два сигналы не сфазированы (смешены по фазе), то разность фаз преобразуется детектором в пропорциональный ей сигнал, который через блок управления ContrDr воздействует на генератора Osc таким образом, чтобы его фаза (соответственно, и частота) отличалась на величину, определяемую коэффициентом усиления в петле отрицательной обратной связи. Распространенной реализацией такой схемы является использование управляемого напряжением генератора и усилителя выходного сигнала детектора в качестве блока управления.

В схеме на рис 7.18,б на вход детектора  подается сигнал с преобразователя Ref. в качестве которого используется двоичный или реверсивный счетчик. В первом случае, в зависимости от соотношения фаз на входах фазового детектора, блок управления ContrDr добавляет или вычитает некоторое количество импульсов из содержимого счетчика (возможен вариант и программируемого счетчика, коэффициент счета которого  меняется блоком управления). Во втором случае блоком управления осуществляется переключение направления счета – суммирование или вычитание. Очевидно, что частота генератора Osc должна быть выше тактовой в К раз.

Схема на рис 7.18,в относится к классу разомкнутых (без обратной связи), т. е. предполагается, что тактовая частота надежно выделяется из информационного потока. В этой схеме частота тактового сигнала удваивается блоком DoubF и через узкополосный фильтр , настроенный на частоту тактового сигнала, и фазовращатель PhChang подается на усилитель-ограничитель Аmр для формирования прямоугольных импульсов тактовой частоты. Удвоение частоты вводится в целях повышения надежности выделения сигналов тактовой частоты в случае нарушения периодичности следования информационных нулей и единиц. Фазовращатель предназначен для компенсации задержки сигнала в удвоителе и фильтре. Устойчивая работа схемы обеспечивается при изменении тактовой частоты передатчика, не превышающем полосы пропускания фильтра.

Ход работы

1. Конструирование IIR-фильтров

В диалоговом окне блока TransferFunction задаем коэффициенты передаточной функции :

В результате моделировани имеем:

Вызываем диалоговое окно конструктора IIR-фильтра, задаем необходимые параметры:

Method – Chebyshev (Чебышева);

Туре – тип фильтра по виду АЧХ: Low Pass (низкочастотные);

Specification Method – порядок (Order) фильтра – 3-й;

Advanced Options – погрешности (Epsilon) – 0,05 при Band Gain по умолчанию;

Frequency Specifications – частота среза – 10 Гц;

Сразу же производится расчет коэффициентов передаточной функции.

В результате моделировани имеем:

2. Конструирование FIR-фильтров

Вызываем диалоговое окно конструктора FIR-фильтра, задаем необходимые параметры:

Order – порядок фильтра – 5-й;

Kind Filter – тип устройства: FIR Filter;

Band Specification – спецификация полосы пропускания: нижняя частота (Start Freq) – 0 Гц, верхняя (End Freq) – 10 Гц, ширина полосы пропускания (Band Weight) – 10 Гц, коэффициент передачи в полосе пропускания (Band Gain) – 1. Сразу же производится расчет коэффициентов передаточной функции.

В результате моделировани имеем:


 

А также другие работы, которые могут Вас заинтересовать

29034. Расчёт фундаментов по второй группе предельных состояний. Определение конечной осадки фундаментов мелкого заложения методом послойного суммирования 34 KB
  Расчёт оснований фундаментов по второй группе предельных состояний по деформациям производится исходя из условия: s ≤ su 1 где s конечная стабилизированная осадка фундамента определённая расчётом; su предельное значение осадки устанавливаемое соответствующими нормативными документами или требованиями проекта. После определения размеров подошвы фундамента и проверки условия pII ≤ R где рII среднее давление на основание по подошве фундамента a R расчётное сопротивление грунта ось фундамента совмещают с литологической колонкой...
29035. Расчёт фундаментов по второй группе предельных состояний. Определение конечной осадки фундаментов мелкого заложения методом эквивалентного слоя 31.5 KB
  Расчёт фундаментов по второй группе предельных состояний по деформациям заключается в выполнении условия s ≤ sw 1 где s конечная стабилизированная осадка фундамента определённая расчётом; sw предельное значение осадки устанавливаемое соответствующими нормативными документами или требованиями проекта. Конечная стабилизированная осадка фундамента может быть определена методом эквивалентного слоя. Осадка с учётом жёсткости и формы подошвы фундамента в случае однородного основания определяется по формуле: s=p0hэmv 2 где p0 ...
29036. Определение расчётного сопротивления грунтов основания по таблицам СНиП 23 KB
  Тип песчаного грунта пески гравелистые крупные средней крупности и т. Плотность сложения песчаного грунта плотный средней плотности рыхлый. Устанавливается по таблице в зависимости от типа песчаного грунта и его коэффициента пористости: 1 где γ – удельный вес грунта; γs – удельный вес твердых частиц; w – влажность грунта. Степень влажности песчаного грунта Sr маловлажный влажный насыщенный водой: 2 где γs – удельный вес воды.
29037. Условия применения свайных фундаментов. Конструктивные решения. Виды свайных фундаментов в зависимости от расположения свай в плане 32 KB
  Условия применения свайных фундаментов. Виды свайных фундаментов в зависимости от расположения свай в плане. В этих условиях чаще всего прибегают к устройству фундаментов из свай. Группы или ряды свай объединённые поверху распределительной плитой или балкой образуют свайный фундамент.
29038. Условия применения свайных фундаментов. Классификация свай по материалу, форме продольного и поперечного сечения 42.5 KB
  Сваи погружаемые в грунт в готовом виде в зависимости от материала из которого они изготовляются подразделяются на железобетонные деревянные стальные и комбинированные. Железобетонные сваи получившие наибольшее распространение в практике строительства подразделяются: по форме поперечного сечения на квадратные квадратные с круглой полостью полые круглого сечения прямоугольные тавровые и двутавровые рис.1; по форме продольного сечения на призматические цилиндрические с наклонными боковыми гранями пирамидальные...
29039. Понятие о висячих сваях и сваях-стойках. Определение несущей способности свай-стоек 28.5 KB
  По характеру передачи нагрузки на грунт сваи подразделяются на висячие сваи и сваистойки. К сваямстойкам относятся сваи прорезающие толщу слабых грунтов и опирающиеся на практически несжимаемые скальные или малосжимаемые грунты крупнообломочные грунты с песчаным заполнителем глины твёрдой консистенции. Сваястойка практически всю нагрузку на грунт передаёт через нижний конец так как при малых вертикальных перемещениях сваи не возникают условия для проявления сил трения на её боковой поверхности рис. Сваястойка работает как сжатый...
29040. Определение несущей способности висячих свай по таблицам СНиП. Понятие о негативном трении и его учёт при определении несущей способности свай 35.5 KB
  Расчёт несущей способности вертикально нагруженных висячих свай производится как правило только по прочности грунта так как по прочности материала сваи она всегда заведомо выше.0385 широко применяемый в практике проектирования и известный под названием практического метода позволяет определять несущую способность сваи по данным геологических изысканий. Метод базируется на обобщении результатов испытаний большого числа обычных и специальных свай вертикальной статической нагрузкой проведенных в различных грунтовых условиях с целью...
29041. Динамический метод определения несущей способности одиночной сваи. Понятие об отказе. Уравнение работ. Контроль за сопротивлением свай при их забивке 28.5 KB
  Динамический метод определения несущей способности одиночной сваи. При молотах ударного действия скорость погружения сваи принято характеризовать величиной её погружения от одного удара называемой отказом сваи. По величине отказа который замеряется при достижении сваей проектной отметки можно судить о её сопротивлении поскольку чем меньше отказ тем очевидно больше несущая способность сваи. Динамический метод и заключается в определении несущей способности сваи по величине её отказа на отметке близкой к проектной.
29042. Определение числа свай в фундаменте. Конструирование ленточных свайных фундаментов 27 KB
  Определение числа свай в фундаменте. Конструирование ленточных свайных фундаментов. Зная несущую способность сваи Fα и принимая что ростверк обеспечивает равномерную передачу нагрузки на все сваи фундамента необходимое число свай n на 1 м длины ленточного фундамента определяется по формуле: 1 где γк коэффициент надёжности принимаемый в зависимости от способа определения несущей способности сваи; N01 расчётная нагрузка на 1 м длины ленточного фундамента. Число свай на 1 м найденное по формуле 1 может быть дробным.