17587

ПРИЛОЖЕНИЯ ПАКЕТА MATHCAD В ЗАДАЧАХ ЛИНЕЙНОЙ АЛГЕБРЫ И МАТЕМАТИЧЕСКОГО АНАЛИЗА

Лабораторная работа

Информатика, кибернетика и программирование

ЛЕКЦИЯ 5. Приложения пакета Mathcad в задачах линейной алгебры и математического анализа 4.1 Задачи линейной алгебры в среде пакета Mathcad. 4.1.1 Определение и ввод матрицы в рабочий документ Mathcad Чтобы определить матрицу нужно: ввести с клавиатуры имя матрицы и знак п...

Русский

2013-07-04

268 KB

4 чел.

ЛЕКЦИЯ 5.

Приложения пакета Mathcad в задачах линейной алгебры и математического анализа

4.1 Задачи линейной алгебры в среде пакета Mathcad.

4.1.1 Определение и ввод матрицы в рабочий документ Mathcad

Чтобы определить матрицу нужно:

  1.  ввести с клавиатуры имя матрицы и знак присваивания (для ввода знака присваивания нужно нажать на клавиатуре комбинацию клавиш <Shift>+<:> или щелкнуть по кнопке<:=> панели Evaluation);
  2.  щелкнуть по кнопке Vector or Matrix Toolbar  в панели математических инструментов, чтобы открыть панель матричных операций Matrix);
  3.  открыть щелчком по кнопке Matrix or Vector окно диалога определения размерности матрицы и ввести размерность матрицы: число строк (Rows), число столбцов (Columns);
  4.  закрыть окно диалога, щелкнув по кнопке Ok.

В рабочем документе, справа от знака присваивания, открывается поле ввода матрицы с помеченными позициями для ввода элементов.

Для того, чтобы ввести элемент матрицы, установите курсор в помеченной позиции и введите с клавиатуры число или выражение.

4.1.2 Нумерация элементов матриц и векторов

Номер первой строки (столбца) матрицы или первой компоненты вектора, хранится в Mathcad в переменной ORIGIN.
По умолчанию в Mathcad координаты векторов, столбцы и строки матрицы нумеруются начиная с
0 (ORIGIN:=0). Поскольку в математической записи чаще используется нумерация с 1, удобно перед началом работы с матрицами  определять значение переменной ORIGIN равным 1, выполнять команду ORIGIN:=1.

4.1.3 Панель операций с матрицами и векторами

Панель векторных и матричных операций открывается щелчком по

кнопке Vector and Matrix Toolbar в панели математических инструментов.

За кнопками панели закреплены следующие функции:

— определение размеров матрицы;

— ввод нижнего индекса;

 — вычисление обратной матрицы;

— вычисление определителя матрицы: |A|=det A; вычисление длины вектора |x|;

 — поэлементные операции с матрицами:
если
A={aij }, B={bij }, то ;

— определение столбца матрицы: — j -й столбец матрицы M;

— транспонирование матрицы: M={mij }, M T ={mji };

— вычисление скалярного произведения векторов: ;

 — вычисление векторного произведения векторов:
a x b = (a2 b3 -a3 b2 , a3 b1 -a1 b3 , a1 b2 -a2 b1 );

 — вычисление суммы компонент вектора: ;

— определение диапазона изменения переменной;

— визуализация цифровой информации, сохраненной в матрице.

Для того чтобы выполнить какую-либо операцию с помощью панели инструментов, нужно выделить матрицу и щелкнуть в панели по кнопке операции, либо щелкнуть по кнопке в панели и ввести в помеченной позиции имя матрицы.

4.1.4 Меню символьных операций с матрицами

Меню символьных операций с матрицами (пункт Matrix меню Symbolics) содержит три функции:

  •  транспонирование (Transpose),
  •  обращение матрицы (Invert),
  •  вычисление определителя матрицы (Determinant).

Если требуется произвести какую-либо операцию через пункт Matrix меню Symbolics, нужно выделить матрицу и щелкнуть в меню по строке нужной операции.

4.1.5 Функции, предназначенные для решения задач линейной алгебры

Функции, предназначенные для решения задач линейной алгебры, можно разделить на три группы.

  •  Функции определения матриц и операций с блоками матриц.
  •  Функции отыскания различных числовых характеристик матриц.
  •  Функции, реализующие численные алгоритмы решения задач линейной алгебры.

Функции определения матриц и операции с блоками матриц:

  •  matrix(m, n, f) — создает и заполняет матрицу размерности m x n, элемент которой, расположенный в i -й строке, j -м столбце, равен значению f(i, j) функции f(x, y);
  •  diag(v) — создает диагональную матрица, элементы главной диагонали которой хранятся в векторе v;
  •  identity(n) — создает единичную матрицу порядка n;
  •  augment(A, B) — формирует матрицу, в первых с т о л б ц а х которой содержится матрица A, а в последних — матрица B (матрицы A и B имеют одинаковое число строк);
  •  stack(A, B) — формирует матрицу, в первых с т р о к а х которой содержится матрица A, а в последних — матрица B (матрицы A и B имеют одинаковое число столбцов);
  •  submatrix(A, ir, jr, ic, jc) — формирует матрицу, которая является блоком матрицы A, расположенным в строках с ir по jr и в столбцах с ic по jc, ir <= jr, ic <= jc.

Функции отыскания различных числовых характеристик матриц:

  •  last(v) — вычисление номера последнего элемента вектора v;
  •  lenght(v) — вычисление количества элементов v вектора;
  •  rows(A) — вычисление числа строк в матрице A;
  •  cols(A) — вычисление числа столбцов в матрице A;
  •  max(A) — вычисление наибольшего элемента в матрицы A;
  •  tr(A) — вычисление следа квадратной матрицы A (след матрицы равен сумме ее диагональных элементов);
  •  rank(A) — вычисление ранга матрицы A;
  •  norm1(A), norm2(A), norme(A), normi(A) — вычисление норм квадратной матрицы A.

Функции, реализующие численные алгоритмы решения задач линейной алгебры:

  •  rref(A) — приведение матрицы к ступенчатому виду с единичным базисным минором (выполняются элементарные операции со строками матрицы);
  •  eigenvals(A) — вычисление собственных значений квадратной матрицы А ;
  •  eigenvecs(A) — вычисление собственных векторов квадратной матрицы А; значением функции является матрица, столбцы которой есть собственные векторы матрицы А; порядок следования векторов отвечает порядку следования собственных значений, вычисленных функцией eigenvals(A);
  •  eigenvec(A, l) — вычисление собственного вектора матрицы А, отвечающего собственному значению l;
  •  lsolve(A, b) — решение системы линейных алгебраических уравнений Ax=b.

4.2 Задачи математического анализа в среде пакета Mathcad

4.2.1 Вычисление пределов

Для вычисления пределов предназначены три кнопки в панели Calculus панели математических инструментов:

 -   оператор вычисления предела функции в точке или на бесконечности;

и  -   операторы вычисления односторонних пределов соответсвенно справа и слева.

Для вычисления предела нужно:

  •  щелкнуть по свободному месту в рабочем документе, затем щелкнуть по нужной кнопке, ввести с клавиатуры в помеченных позициях имя или выражение допредельной функции и предельной точки;
  •  выделить все выражение и щелкнуть по строке Symbolically в пункте Evaluate меню Symbolics (или щелкнуть по кнопке в панели символьных операций Symbolic).

4.2.2 Дифференцирование

Чтобы найти производную нужно:

  •  щелкнуть по свободному месту в рабочем документе, щелкнуть в панели Calculus по кнопке , ввести с клавиатуры в помеченных позициях имя или выражение функции и аргумента;
  •  заключить все выражение в выделяющую рамку и щелкнуть по строке Symbolically в пункте Evaluate меню Symbolics  (или щелкнуть по кнопке в панели символьных операций Symbolic).

Чтобы найти производные высших порядков нужно:

  •  щелкнуть по свободному месту в рабочем документе, щелкнуть в панели Calculus по кнопке , ввести с клавиатуры в помеченных позициях имя или выражение функции и аргумента;
  •  заключить все выражение в выделяющую рамку и щелкнуть по строке Symbolically в пункте Evaluate меню Symbolics  (или щелкнуть по кнопке в панели символьных операций Symbolic).

Чтобы найти производную с помощью меню нужно:

  •  ввести в рабочий документ выражение для функции;
  •  выделить аргумент и щелкнуть по строке Differentiate в пункте Variable меню Symbolics.

4.2.3 Интегрирование

Чтобы найти неопределенный интеграл нужно:

  •  щелкнуть по свободному месту в рабочем документе, щелкнуть в панели Calculus по кнопке ,   ввести с клавиатуры в помеченных позициях выражение функции и имя переменной интегрирования;
  •  заключить все выражение в выделяющую рамку и щелкнуть по строке Symbolically в пункте Evaluate меню Symbolics  (или щелкнуть по кнопке в панели символьных операций Symbolic).

Чтобы вычислить определенный интеграл нужно:

  •  щелкнуть по свободному месту в рабочем документе, щелкнуть в панели Calculus по кнопке ,   ввести с клавиатуры в помеченных позициях выражение функции, имя переменной интегрирования и пределов интегрирования;
  •  заключить все выражение в выделяющую рамку и щелкнуть по строке Symbolically в пункте Evaluate меню Symbolics  (или щелкнуть по кнопке в панели символьных операций Symbolic).

Чтобы найти неопределенный интеграл с помощью меню нужно:

  •  ввести в рабочий документ выражение для интегрируемой функции;
  •  выделить аргумент и щелкнуть по строке Integrate в пункте Variable меню Symbolics.

4.2.4 Суммирование рядов

Чтобы вычислить конечную сумму и сумму сходящегося ряда нужно:

  •  щелкнуть по свободному месту в рабочем документе, щелкнуть в панели Calculus по кнопке ,   ввести с клавиатуры в помеченных позициях выражение функции, имя индекса суммирования, его первое и последнее значения (для рядов нужно ввести в качестве последнего значения символ бесконечности, щелкнув по кнопке в той же панели);
  •  заключить все выражение в выделяющую рамку и щелкнуть по строке Symbolically в пункте Evaluate меню Symbolics  (или щелкнуть по кнопке в панели символьных операций Symbolic).
    Чтобы получить вычисленное значение в десятичном формате, нужно выделить его, щелкнуть   по строке
    Floating Point в пункте Evaluate меню Symbolics и ввести в окне диалога требуемое число десятичных знаков.

Можно сразу получить значение суммы в десятичном формате, щелкнув вместо Symbolically по строке Floating Point.

4.2.5 Разложение функций по формуле Тейлора

Чтобы найти разложение функции по формуле Тейлора в окрестности любой точки из области определения функции нужно:

  •  щелкнуть по свободному месту в рабочем документе, щелкнуть в панели Symbolic по кнопке ;
  •  ввести с клавиатуры перед ключевым словом  series выражение для функции, после ключевого слова - выражение <имя переменной = точка, в окрестности которой строится разложение> и степень старшего члена в разложении (знак равенства можно ввести, щелкнув по соответсвующей кнопке панели Boolean);
  •  щелкнуть в рабочем документе вне выделяющей рамки;
    в рабочем документе отображается только сам многочлен Тейлора (частичная сумма ряда Тейлора).

Чтобы найти разложение функции по формуле Тейлора с помощью меню нужно:

  •  ввести функцию, выделить переменную, щелкнуть по строке Expand to Series в пункте Variable меню Symbolics;
  •  ввести в окне диалога степень старшего члена в разложении и щелкнуть по кнопке Ok; в рабочем документе отображается соответствующее разложение с остаточным членом в форме Пеано.


 

А также другие работы, которые могут Вас заинтересовать

83768. Объект и предмет налогообложения. Масштаб налога и налоговая база 44.73 KB
  Объект налогообложения это те юридические факты действия события состояния которые обуславливают обязанность субъекта заплатить налог совершение оборота по реализации товара работ услуг; ввоз товара на территорию России; владение имуществом; совершение сделки куплипродажи ценных бумаг; вступление в наследство; получение дохода и т. наличие объекта налогообложения. Налоговый кодекс Российской Федерации определяет понятие объект налогообложения так: Объектами налогообложения могут являться операции по реализации товаров работ...
83769. Налоговый период, порядок исчисления налога, способы, сроки и порядок уплаты налога 42.93 KB
  Налоговый период календарный год или иной период времени применительно к отдельным налогам по окончании которого определяется налоговая база и исчисляется сумма налога подлежащая уплате. Продолжительность момент начала и момент окончания каждого налогового периода устанавливается законодательством о налогах и сборах применительно к каждому отдельному налогу. Порядок исчисления налога ст.
83770. Понятие системы налогов и сборов. Структура и принципы построения 45.33 KB
  Система налогов и сборов не путать с налоговой системой это совокупность налогов и сборов взимаемых с плательщиков в порядке и на условиях определенных Налоговым кодексом. 12 НК РФ устанавливает следующие виды налогов и сборов в РФ: федеральные; региональные; местные. Федеральные налоги Федеральными налогами и сборами признаются налоги и сборы которые установлены НК РФ и обязательны к уплате на всей территории РФ при отсутствии специальных налоговых режимов п.
83771. Налоговое право РФ: общие положения, предмет, метод, система 46.7 KB
  Сегодня основными научными подходами для определения места НП в системе юридических наук являются: 1 концепция рассмотрения НП в качестве обособленной части АП швейцарская налоговая правовая доктрина 2 концепция рассмотрения НП в качестве обособленной части ФП неаполитанская налоговая правовая школа 3 концепция автономии НП согласно которой оно занимает особое или даже исключительное положение в системе права независимое от общих принципов как частного так и публичного права французская налоговая правовая доктрина 4 концепция...
83772. Источники налогового права. Налоговое законодательство и дополнительные источники налогового права 48.45 KB
  Налоговое законодательство и дополнительные источники налогового права. Источники налогового права это внешние конкретные формы его выражения т. правовые акты представительных и исполнительных органов государственной власти и органов местного самоуправления содержащие нормы налогового права.
83773. Нормы налогового права: понятие, особенности, виды норм налогового права 48.68 KB
  Особенности норм НП: 1 налоговые нормы отличаются от всех иных норм права по своему непосредственному целевому назначению 2 реализация большинства из них политически направлена в рамках внутренней и внешней экономической политики Признаки: 1 это правила поведения гарантированные государством 2 возлагают юридические обязанности и предоставляют субъективные права 3 имеют общеобязательный характер 4 всегда выражены в НПА 5 являются средством реализации публичных а не частных интересов 6 практически не имеют своего прототипа в...
83774. Налоговые правоотношения: понятие, признаки, структура 45.16 KB
  НК РФ законодательство о налогах и сборах регулирует властные отношения по установлению введению и взиманию налогов и сборов в РФ а также отношения возникающие в процессе осуществления налогового контроля обжалования актов налоговых органов действий бездействия их должностных лиц и привлечения к ответственности за совершение налогового правонарушения. Под воздействием правовых норм участники налоговых правоотношений наделяются правосубъектностью юридическими правами и обязанностями в налоговой сфере. Наряду с ней предпосылками...
83775. Субъекты налоговых правоотношений: общая характеристика 46.47 KB
  Точное определение субъекта налогового права имеет и практическое значение поскольку позволяет выявить круг лиц вступающих в налоговые отношения и действия которых влекут юридически значимые последствия. Наличие критериев позволяющих относить какоелибо физическое или юридическое лицо к субъектам налогового права дает возможность установить какие лица и их действия подпадают под юрисдикцию законодательства о налогах и сборах. Только субъекты налогового права могут иметь права и нести обязанности предусмотренные НК РФ и принятыми в...
83776. Правовой статус налогоплательщиков, налоговых агентов и налоговых представителей 57.26 KB
  Возникновение обстоятельств влекущих уплату суммы налога или сбора служит юридическим фактом на основании которого субъект налогового права приобретает статус участника налоговых правоотношений. 11 НК РФ указывает что физические лица осуществляющие предпринимательскую деятельность без образования юридического лица но не зарегистрировавшиеся в качестве индивидуальных предпринимателей в нарушение требований гражданского законодательства при исполнении налоговых обязанностей не вправе ссылаться на то что они не являются индивидуальными...