17643

Аналіз поляризованого світла

Доклад

Физика

Аналіз поляризованого світла. Используя поляризатор можно определить направление поляризации линейно поляризованной световой волны. Для этого вращают поляризатор относительно оси светового пучка и наблюдают за изменениями интенсивности прошедшего света. Если при...

Украинкский

2013-07-05

42.56 KB

5 чел.

Аналіз поляризованого світла.

Используя поляризатор, можно определить направление поляризации линейно поляризованной световой волны. Для этого вращают поляризатор относительно оси светового пучка и наблюдают за изменениями интенсивности прошедшего света. Если при некотором положении поляризатора свет полностью задерживается им, то исходный пучок линейно поляризован, причем направление поляризации ортогонально направлению пропускания поляризатора в данном положении.

Если падающий свет естественный или поляризован по кругу, то при вращении поляризатора интенсивность проходящего света меняться не будет. Для отличия одного случая от другого применяется пластинка в четверть волны (/4), которая вносит дополнительную разность фаз в /2 между проходящими через нее лучами, поляризованными во взаимно перпендикулярных плоскостях. Обычно пластинка /4 вырезается из одноосного кристалла (например, кварца) параллельно его оптической оси или из двуосного кристалла, например слюды. В свете, поляризованном по кругу, разность фаз между любыми двумя взаимно перпендикулярными колебаниями равна ±/2. Если на пути такого света поставить пластинку /4, то она внесет дополнительную разность фаз ±/2. Результирующая разность фаз получится 0 или , и свет станет поляризованным линейно.

Его можно полностью погасить поворотом поляризатора. Если же падающий свет естественный, то он останется таковым и после прохождения через пластинку /4. В этом случае гашения не будет.

Допустим, что падающая волна поляризована эллиптически. Если поставить поляризатор, то при его вращении интенсивность проходящего света в двух положениях (отличающихся друг от друга на 180°) будет максимальна, а в перпендикулярных к ним положениях минимальна. Эти положения определят направления главных осей эллипса колебаний. После этого на пути падающего света поставим пластинку /4, оптическая ось которой ориентирована параллельно одной из главных осей эллипса. Тогда после прохождения через пластинку свет станет поляризован линейно и может быть погашен поворотом поляризатора. При этом поляризатор надо будет повернуть на некоторый угол относительно исходного положения, когда интенсивность проходящего через него света была минимальна или максимальна. В исходном положении главное сечение поляризатора было ориентировано параллельно одной из главных осей эллипса колебаний. После же прохождения через пластинку /4 плоскость колебаний линейно поляризованного света будет проходить через одну из диагоналей прямоугольника на рис.

Чтобы отличить друг от друга: 1) эллиптически поляризованный свет; 2) смесь естественного света с линейно поляризованным светом (отчасти линейно поляризованный свет); 3) смесь естественного света с эллиптически поляризованным светом (отчасти эллиптически поляризованный свет). Надо поместить на пути распространения света пластинку в четверть волны, а за ней поляризатор. Если вращением пластинки вокруг направления луча можно найти такое положение, при котором свет, прошедший через нее, можно погасить последующим вращением поляризатора, то падающий свет был эллиптически поляризован. Если это сделать не удается то мы имеем дело либо со смесью естественного света с линейно поляризованным, либо со смесью естественного света с эллиптически поляризованным. Чтобы отличить друг от друга эти два последних случая, на пути света ставят сначала только один поляризатор и устанавливают его на минимум интенсивности проходящего света. Затем перед поляризатором помещают пластинку в четверть волны. Вращением пластинки и поляризатора снова добиваются минимума интенсивности. Если этот минимум интенсивности получается при прежнем положении поляризатора (или при повороте его на 180°), то мы имеем смесь естественного света с линейно поляризованным. Если же для получения минимума требуется повернуть поляризатор на некоторый угол, — то смесь естественного света с эллиптически поляризованным.

Вместо пластинки /4 применяются более совершенные приспособления, называемые компенсаторами, которые преобразуют эллиптически поляризованный свет в свет с линейной поляризацией. Компенсатор представляет собой пластинку, составленную из двух клиньев анизотропного кристалла так, что при сдвиге одного клина относительно другого толщина пластинки меняется. Такое устройство позволяет плавно варьировать толщину анизотропной пластинки и, следовательно, плавно менять разность фаз ∆φ между обыкновенной и необыкновенной волнами.

На рис. показан компенсатор Солейля. В конфигурации, показанной на рисунке, компенсатор вносит сдвиг фазы  между обыкновенной и необыкновенной волнами. Плавная регулировка фазового сдвига осуществляется путем смещения одного клина компенсатора относительно другого.

Конспект

Нехай у нас є суміш неполяризованого та лінійно поляризованого світла, треба визначити пропорції в суміші:

Матриця аналізатора:

– первинний вектор для падаючого променя.

закон Малюса

Степінь поляризації визначається:


 

А также другие работы, которые могут Вас заинтересовать

12225. Практическое использование современных информационных технологий 213.5 KB
  СОДЕРЖАНИЕ [1] 1. Общие положения [1.1] Цель и задачи выполнения лабораторных работ [1.2] 1.2. Содержание и оформление отчета по практическим заданиям [2] 2. Задания и методические указания к выполнению работ [3] Библиографичес...
12226. Исследование основных схем выпрямления и изучение влияния нагрузки и сглаживающих фильтров на их работу 75.08 KB
  Лабораторная работа №1 Исследование основных схем выпрямления и изучение влияния нагрузки и сглаживающих фильтров на их работу Цель работы: научиться снимать и строить характеристики схем выпрямления; научиться снимать осциллограммы напряжений; нау...
12227. Кинетика разложения мурексида в кислой среде 115.5 KB
  Кинетика разложения мурексида в кислой среде Цель работы: определение порядка реакции по мурексиду и катализатору кислоте и составление дифференциального кинетического уравнения по результатам опытов; определение константы диссоциации слабой кислоты путем кинетич
12228. Кинетика разложения мурексида в кислой среде. 31.36 KB
  Лабораторная работа №2 Кинетика разложения мурексида в кислой среде Цель работы: определение порядка реакции по мурексиду и катализатору кислоте и составление дифференциального кинетического уравнения реакции по результатам оп
12229. Измерение ЭДС элемента Якоби-Даниэля. Определение потенциала отдельных электродов 29 KB
  Измерение ЭДС элемента ЯкобиДаниэля. Определение потенциала отдельных электродов Цель работы: приготовление гальванического элемента и измерение его ЭДС. Вычисление ЭДС элемента при заданных концентрациях солей. Сравнение полученных результатов с вычисленными знач
12230. Определение порядка реакции окисления иодид-ионов ионами трехвалентного железа 194 KB
  Определение порядка реакции окисления иодидионов ионами трехвалентного железа Цель работы: определение частных кинетических порядков и общего кинетического действительного порядка реакции Fe3I Fe2I 1 в водном растворе и сравнение их со стехиометрическими поря
12231. ИЗУЧЕНИЕ КИНЕТИКИ РЕАКЦИИ ОМЫЛЕНИЯ СЛОЖНОГО ЭФИРА 74 KB
  Изучение кинетики реакции омыления сложного эфира Цель: Определить средние значения K реакции омыления этилацетата в щелочной среде при двух температурах; вычислить энергию активации данной реакции. Ход работы: Измерение постоянной сосуда. Определялась
12232. Омыление сложного эфира в щелочной среде при двух температурах 242 KB
  Изучение кинетики реакции омыления сложного эфира Цель работы: определение средних значений констант скорости реакции омыления сложного эфира в щелочной среде при двух температурах вычисление энергии активации и предэкспоненциального множителя. Принцип метода: ко
12233. Определение средних значений констант скорости реакции омыления сложного эфира 22.27 KB
  Лабораторная работа № 1 Цель работы: определение средних значений констант скорости реакции омыления сложного эфира этилацетата в щелочной среде. Опыты показывают что реакция протекает как реакция второго порядка.