17671

Нелінійна поляризація класифікація нелінійних явищ

Доклад

Физика

Нелінійна поляризація: класифікація нелінійних явищ. В оптиці взагалі кажучи можна говорити про багато параметричних явищ які в широкому розумінні можна віднести до нелінійних. До них наприклад можна віднести ефект Керра в якому під дією сильного електричного поля

Украинкский

2013-07-05

25.01 KB

7 чел.

Нелінійна поляризація: класифікація нелінійних явищ.

В оптиці, взагалі кажучи, можна говорити про багато параметричних явищ, які в широкому розумінні можна віднести до нелінійних. До них, наприклад, можна віднести ефект Керра, в якому під дією сильного електричного поля виникає подвійне заломлення променів у нормально ізотропному середовищі. Ефект Зеємана, результатом якого є розщеплення спектральних ліній під дією магнітного поля, також належить до нелінійного магнітооптичного явища. Можна врахувати дисперсію в ефекті Зеємана, то тоді, як наслідок, можна одержати такі явища, як ефект Коттона - Мутона і ефект Фарадея. До нелінійних явищ в оптиці можна віднести також комбінаційне розсіяння світла, при якому енергія коливань молекул додається до енергії оптичної хвилі. До такого класу нелінійностей можна було б віднести також і зміни властивостей оптичних середовищ, що відбуваються в результаті освітлення, при якому має місце перерозподіл населеності оптичних електронів.

Власно оптична нелінійність відбувається в результаті нелінійної деформації окремих структурних елементів речовин під дією самих оптичних хвиль.

Кожне з власно нелінійних явищ залежить від інтенсивності світла. Тому цілком природно дати їм класифікацію з урахуванням степеневої залежності від інтенсивності. Найважливіші ефекти нелінійної оптики разом зі значенням показника степені у функціональній залежності від інтенсивності наведено нижче. (2) Генерація другої гармоніки, Генерація сумарних частот, Вимушене комбінаційне розсіяння, Розсіяння Мандельштама – Бріллюена, Антистоксове комбінаційне розсіяння, Інверсний ефект Фарадея, Двофотонне поглинання.; (2,3) Нелінійна рефракція

Изобретение лазеров сделало возможным экспериментировать с интенсивными световыми пучками, в которых напряженность электрического поля не пренебрежимо мала по сравнению с внутриатомными и внутримолекулярными полями. В таких пучках возникают уже нелинейные оптические явления, и притом не только как малые поправки к линейным, но также и как явления крупного масштаба.

При распространении света в среде все такие явления связаны прежде всего с нелинейной зависимостью вектора поляризации среды  от напряженности электрического поля  световой волны. Среду мы будем предполагать однородной, не будем учитывать ее магнитные свойства и пространственную дисперсию. Если поле  еще не очень сильное, то вектор  можно разложить по степеням составляющих вектора  и оборвать такое разложение на нескольких первых членах. Тогда в общем случае, когда среда анизотропна, можно написать  (123.1). Где в соответствии с общепринятой тензорной символикой подразумевается, что по дважды повторяющимся индексам производится суммирование. Здесь тензор  есть обычная или линейная поляризуемость среды, а тензоры высших порядков   называются соответственно квадратичной, кубичной и пр. поляризуемостями. Поле  предполагается монохроматическим, а поляризуемости а - функциями частоты . Для изотропной среды все тензоры  вырождаются в скаляры.

Если каждая точка среды является центром симметрии, то все поляризуемости четных порядков обращаются в нуль. (Четность определяется числом индексов без первого.) Действительно, изменим на противоположные направления всех координатных осей. Тогда изменятся знаки у  и , но  останется неизменным, так как начало координат, как и всякая точка среды, есть ее центр симметрии. Не изменится и весь квадратичный член . Но знак Pj изменится на противоположный. Чтобы соотношение (123.1) осталось справедливым и в новой системе координат, должно быть . Так же докажем, что должны обращаться в нуль и остальные поляризуемости четных порядков.

С наличием квадратичной поляризуемости связаны многие нелинейные оптические явления. Из доказанного выше следует, что в изотропных средах нелинейные квадратичные явления невозможны. Тем не менее, и при рассмотрении таких явлений можно пользоваться моделью изотропной среды, полагая ,(123.2) где поляризуемости , 2, 3, ... являются уже скалярами. Такое упрощение вполне допустимо при качественном рассмотрении возможных нелинейных оптических явлений. Надо только иметь в виду, что в кристаллах в выбранном направлении могут распространяться волны не всех, а только избранных поляризаций. Соотношение (123.2) приближенно применимо к каждой из таких волн, причем для различных волн поляризуемости , 2, ... имеют разные значения. Кроме того, волны разных поляризаций могут нелинейно взаимодействовать, обмениваясь энергией друг с другом. Такое взаимодействие должно иметь место при тензорной связи (123.1) между  и . Но оно было бы невозможно, если бы эта связь была скалярной типа (123.2). Понятно, что при нашем подходе влияние такого взаимодействия может быть учтено только качественно.

Разобьем поляризацию  на линейную и нелинейную части: . Нелинейная часть определяется выражением    (123.3), а линейная . В соответствии с этим и индукция  представится суммой линейной части  и нелинейной . Линейная часть, очевидно, равна , где - обычная диэлектрическая проницаемость среды, как она определяется в линейной электродинамике. После этого запишем систему фундаментальных уравнений Максвелла в следующем виде:

(123.4)

Для решения такой системы применяем метод последовательных приближений. В нулевом приближении в уравнении (123.4) отбрасываем правые части. Получатся обычные уравнения линейной электродинамики. В качестве нулевого приближения возьмем плоскую волну ,(123.5)

где волновой вектор  удовлетворяет обычному соотношению  Нелинейная добавка (123.3) к поляризации среды, вычисленная в нулевом приближении, равна .(124.1) Первое слагаемое в этом выражении не зависит от времени. С ним связано так называемое оптическое детектирование, т. е. возникновение в нелинейной среде постоянной электрической поляризации при прохождении через нее мощной световой волны. Второе слагаемое в (124.1) гармонически меняется во времени. С ним связана генерация в нелинейной среде второй гармоники, т.е. волны с удвоенной частотой .  Если взять две волны : , , тогда ;

– оптическое детектирование

- генерация второй гармоники

- генерация волн с суммарными и разностными частотами.


 

А также другие работы, которые могут Вас заинтересовать

74424. Осевой цилиндр корня 39 KB
  В осевом цилиндре корня можно различать сложный радиальный проводящий пучок и паренхиму ткань периферическая часть которой в виде кольца клеток называется перициклом рис. Эти клетки удлиняются в радиальном направлении делятся тангентальными перегородками и образуют корнеродную дугу со слоями клеток функционирующими по тому же типу как в кончике корня. Заложение боковых корешков происходит весьма близко к конусу нарастания образующего их корня выход же их наружу на значительном расстоянии.
74425. Строение типичного зеленого листа 58 KB
  В пластинке листа уже с помощью лупы можно различить 4 группы тканей: 1 покровную кожицу или эпидермис; 2 основную питательную мезофилл1; 3 проводящую сосудистоволокнистые пучки жилки; 4 механическую придающую листу жесткость определяющую положение листа в пространстве. Эпидермис стебля переходит на черешок и пластинку листа. Местами преимущественно на нижней стороне листа в эпидермисе находятся устьица.
74426. Флоэма 39 KB
  При изучении формирования члеников ситовидной трубки можно видеть что сначала членик представляет живую тонкостенную клетку с протоплазмой ядром лейкопластами и центральной вакуолей через полость которой проходят тяжи протоплазмы. Клетка членик ситовидной трубки растет; замыкающие пленки пор при этом растягиваются утоньшаются; в них образуются мелкие перфорации; в остальной части клеточная оболочка значительно утолщается под микроскопом она сильно блестит. Денатурация протоплазмы обнаруживается тем что членики трубки уже не...
74427. Бесполое и половое размножение хвощей 29 KB
  Благодаря этим лентам споры обычно сцепляются в рыхлые комочки разносимые ветром из вскрывшихся спорангиев и заростки развивающиеся из спор бывают скучены группами. Раньше заростки хвощей считали раздельнополыми: одни более мелкие только с антеридиями другие более крупные только с архегониями. Однако в недавнее время у некоторых видов были обнаружены и обоеполые заростки. Возможно что они потенциально обоеполы у многих видов и что кажущаяся их однополость объясняется неодновременностью развития архегониев и антеридиев архегонии...
74428. ЧЕРЕДОВАНИЕ ПОЛОВОГО И БЕСПОЛОГО ПОКОЛЕНИЙ И СМЕНА ЯДЕРНЫХ ФАЗ 37.5 KB
  У большинства же зигота немедленно начинает делиться и образует новое растение или зародыш его; последний у семенных растений временно задерживается в дальнейшем развитии. У большинства оно способно размножаться вегетативно; кроме того у очень многих растений на нем или в нем образуются бесполым путем специальные клетки служащие для размножения носящие нередко различные названия и объединяемые под общим наименованием спор бесполого размножения. Каждый вид растений характеризуется определенным диплоидным и вдвое меньшим гаплоидным числом...
74429. Эпиблема (волосконосный слой) 31 KB
  На расстоянии 0110 мм обычно на расстоянии 123 мм от крайней точки корня клетки эпиблемы начинают образовывать корневые волоски. Корневые волоски многих травянистых растений длиннее чем у большинства древесных пород. При свободном росте при развитии корней в воде или во влажном воздухе волоски имеют форму цилиндра или конуса с закруглением на конце. Корневые волоски играют и механическую роль давая опору верхушке корня пробивающейся при росте между частицами почвы и способствуя заякориванию корневой системы в земле.
74430. Бесполое и половое размножение равноспоровых папоротников 31.5 KB
  Стенка спорангиев однослойная; содержимое их археспорий образует после редукционного деления клеточных ядер многочисленные темные споры служащие для бесполого размножения папоротников. Раскрывание созревших и начинающих подсыхать спорангиев происходит у громадного большинства папоротников при содействии группы клеток его стенок расположенных у многих кольцом и имеющих частичные утолщения...
74431. Бесполое и половое размножение разноспоровых, или водяных, папоротников 31.5 KB
  У некоторых разноспоровых папоротников а также других представителей высших споровых растений селагинелл изоэтеса произошла еще большая редукция мужских и женских заростков а также потеря и женским гаметофитом способности к фотосинтезу. У селагинелл близких к плаунам мега и микроспорофиллы собраны в колоски; мегаспоры прорастают в мегаспорангиях еще на материнском растении; у некоторых видов микроспоры переносятся на мегаспорофиллы и мегаспорангии где происходит оплодотворение начинается развитие зародыша и мегаспорангии отпадает...
74432. ПОЛОВОЕ РАЗМНОЖЕНИЕ СЕМЕННЫХ РАСТЕНИЙ 31 KB
  Для рассеивания распространения растения служат следовательно не споры как у типичных споровых растений а семена; бесполого размножения спорами нет чередование поколений выражено неясно и выявляется лишь путем сравнительноморфологических и цитологических исследований. Спорофиллы покрытосеменных растений тесно скученные на концах побегов и у большинства окруженные еще метаморфизированными верхушечными листьями образуют вместе с ними цветок; мы можем охарактеризовать его как укороченный побег листья которого метаморфизированы в связи с...