17671

Нелінійна поляризація класифікація нелінійних явищ

Доклад

Физика

Нелінійна поляризація: класифікація нелінійних явищ. В оптиці взагалі кажучи можна говорити про багато параметричних явищ які в широкому розумінні можна віднести до нелінійних. До них наприклад можна віднести ефект Керра в якому під дією сильного електричного поля

Украинкский

2013-07-05

25.01 KB

8 чел.

Нелінійна поляризація: класифікація нелінійних явищ.

В оптиці, взагалі кажучи, можна говорити про багато параметричних явищ, які в широкому розумінні можна віднести до нелінійних. До них, наприклад, можна віднести ефект Керра, в якому під дією сильного електричного поля виникає подвійне заломлення променів у нормально ізотропному середовищі. Ефект Зеємана, результатом якого є розщеплення спектральних ліній під дією магнітного поля, також належить до нелінійного магнітооптичного явища. Можна врахувати дисперсію в ефекті Зеємана, то тоді, як наслідок, можна одержати такі явища, як ефект Коттона - Мутона і ефект Фарадея. До нелінійних явищ в оптиці можна віднести також комбінаційне розсіяння світла, при якому енергія коливань молекул додається до енергії оптичної хвилі. До такого класу нелінійностей можна було б віднести також і зміни властивостей оптичних середовищ, що відбуваються в результаті освітлення, при якому має місце перерозподіл населеності оптичних електронів.

Власно оптична нелінійність відбувається в результаті нелінійної деформації окремих структурних елементів речовин під дією самих оптичних хвиль.

Кожне з власно нелінійних явищ залежить від інтенсивності світла. Тому цілком природно дати їм класифікацію з урахуванням степеневої залежності від інтенсивності. Найважливіші ефекти нелінійної оптики разом зі значенням показника степені у функціональній залежності від інтенсивності наведено нижче. (2) Генерація другої гармоніки, Генерація сумарних частот, Вимушене комбінаційне розсіяння, Розсіяння Мандельштама – Бріллюена, Антистоксове комбінаційне розсіяння, Інверсний ефект Фарадея, Двофотонне поглинання.; (2,3) Нелінійна рефракція

Изобретение лазеров сделало возможным экспериментировать с интенсивными световыми пучками, в которых напряженность электрического поля не пренебрежимо мала по сравнению с внутриатомными и внутримолекулярными полями. В таких пучках возникают уже нелинейные оптические явления, и притом не только как малые поправки к линейным, но также и как явления крупного масштаба.

При распространении света в среде все такие явления связаны прежде всего с нелинейной зависимостью вектора поляризации среды  от напряженности электрического поля  световой волны. Среду мы будем предполагать однородной, не будем учитывать ее магнитные свойства и пространственную дисперсию. Если поле  еще не очень сильное, то вектор  можно разложить по степеням составляющих вектора  и оборвать такое разложение на нескольких первых членах. Тогда в общем случае, когда среда анизотропна, можно написать  (123.1). Где в соответствии с общепринятой тензорной символикой подразумевается, что по дважды повторяющимся индексам производится суммирование. Здесь тензор  есть обычная или линейная поляризуемость среды, а тензоры высших порядков   называются соответственно квадратичной, кубичной и пр. поляризуемостями. Поле  предполагается монохроматическим, а поляризуемости а - функциями частоты . Для изотропной среды все тензоры  вырождаются в скаляры.

Если каждая точка среды является центром симметрии, то все поляризуемости четных порядков обращаются в нуль. (Четность определяется числом индексов без первого.) Действительно, изменим на противоположные направления всех координатных осей. Тогда изменятся знаки у  и , но  останется неизменным, так как начало координат, как и всякая точка среды, есть ее центр симметрии. Не изменится и весь квадратичный член . Но знак Pj изменится на противоположный. Чтобы соотношение (123.1) осталось справедливым и в новой системе координат, должно быть . Так же докажем, что должны обращаться в нуль и остальные поляризуемости четных порядков.

С наличием квадратичной поляризуемости связаны многие нелинейные оптические явления. Из доказанного выше следует, что в изотропных средах нелинейные квадратичные явления невозможны. Тем не менее, и при рассмотрении таких явлений можно пользоваться моделью изотропной среды, полагая ,(123.2) где поляризуемости , 2, 3, ... являются уже скалярами. Такое упрощение вполне допустимо при качественном рассмотрении возможных нелинейных оптических явлений. Надо только иметь в виду, что в кристаллах в выбранном направлении могут распространяться волны не всех, а только избранных поляризаций. Соотношение (123.2) приближенно применимо к каждой из таких волн, причем для различных волн поляризуемости , 2, ... имеют разные значения. Кроме того, волны разных поляризаций могут нелинейно взаимодействовать, обмениваясь энергией друг с другом. Такое взаимодействие должно иметь место при тензорной связи (123.1) между  и . Но оно было бы невозможно, если бы эта связь была скалярной типа (123.2). Понятно, что при нашем подходе влияние такого взаимодействия может быть учтено только качественно.

Разобьем поляризацию  на линейную и нелинейную части: . Нелинейная часть определяется выражением    (123.3), а линейная . В соответствии с этим и индукция  представится суммой линейной части  и нелинейной . Линейная часть, очевидно, равна , где - обычная диэлектрическая проницаемость среды, как она определяется в линейной электродинамике. После этого запишем систему фундаментальных уравнений Максвелла в следующем виде:

(123.4)

Для решения такой системы применяем метод последовательных приближений. В нулевом приближении в уравнении (123.4) отбрасываем правые части. Получатся обычные уравнения линейной электродинамики. В качестве нулевого приближения возьмем плоскую волну ,(123.5)

где волновой вектор  удовлетворяет обычному соотношению  Нелинейная добавка (123.3) к поляризации среды, вычисленная в нулевом приближении, равна .(124.1) Первое слагаемое в этом выражении не зависит от времени. С ним связано так называемое оптическое детектирование, т. е. возникновение в нелинейной среде постоянной электрической поляризации при прохождении через нее мощной световой волны. Второе слагаемое в (124.1) гармонически меняется во времени. С ним связана генерация в нелинейной среде второй гармоники, т.е. волны с удвоенной частотой .  Если взять две волны : , , тогда ;

– оптическое детектирование

- генерация второй гармоники

- генерация волн с суммарными и разностными частотами.


 

А также другие работы, которые могут Вас заинтересовать

5424. Исследование дисперсионных искажений импульсов в оптическом волокне 1.21 MB
  Целью работы является проведение компьютерного эксперимента по исследованию влияния составляющих дисперсии на временные параметры передаваемых оптических импульсов: - модовой дисперсии ступенчатых оптических волокон- модовой дисперси...
5425. Разработка единичного технологического процесса механической обработки детали ВТУЛКА 899.5 KB
  Разработать и оформить единичный технологический процесс механической обработки детали ВТУЛКА (чертеж № 9) с использованием токарно-револьверного станка модели 1Е340П. Годовая программа выпуска 1200 штук. Последовательность работ: ...
5426. Проектирование коробки передач 77 KB
  Введение Автомобиль - самое распространенное в современном мире механическое транспортное средство. Коробка передач – механизм, преобразующий крутящий момент, передающийся от двигателя через сцепление, по величине и направлению. Дает возмо...
5427. Изучение методов контроля линейных размеров деталей с помощью штангенинструментов 2.34 MB
  Цель работы: изучить метод измерений размеров деталей с помощью штангенциркуля и освоить методику представления результатов измерений. Общие сведения. Штангенинструменты, предназначенные для измерений линейных размеров деталей, пре...
5428. Проектирование привода ленточного транспортера 1.35 MB
  Анализ схемы привода. Привод состоит из асинхронного двигателя, цилиндрического соосного двухпоточного редуктора и приводного вала с барабаном и муфтой. В ходе проектирования транспортера были приняты следующие конструктивные решения: для выравни...
5429. Концептуальные основы реформирования бухгалтерского учета и отчетности в Российской Федерации 192.5 KB
  Введение Переход экономики России к рыночным отношениям поставил перед бухгалтерским учетом совершенно новые цели. Существовавшая ранее в условиях планируемой командной экономики система бухгалтерского учета, была обусловлена общественным характером...
5430. Смутное время 43.82 KB
  Смутное время На рубеже 16 и 17 вв. Московское государство переживало тяжелый и сложный морально-политический и социально-экономический кризис, который особенно проявлялся в положении центральных областей государства. С открытием для русской колон...
5431. Изучение кодеков ИКМ 203.5 KB
  Изучение кодеков ИКМ Цель работы Изучить процессы квантования и кодирования речевых сигналов в цифровых системах передачи. Задание на лабораторную работу Задание по теоретической части Изучить процедуры линейного и нелинейног...
5432. Термодинаміка. Виникнення термодинаміки 61 KB
  Термодинаміка Виникнення термодинаміки Теплові явища відрізняються від механічних і електромагнітних тем, що закони теплових явищ необоротні (тобто теплові процеси самі йдуть лише в одному напрямку) і що теплові процеси здійснюються лише в макрос...