17672

Обмін енергією між нелінійною поляризацією і електромагнітним полем

Доклад

Физика

Обмін енергією між нелінійною поляризацією і електромагнітним полем. При распространении света в среде все такие явления связаны прежде всего с нелинейной зависимостью вектора поляризации среды Р от напряженности электрического поля Е световой волны. Среду мы будем п

Украинкский

2013-07-05

23.58 KB

2 чел.

Обмін енергією між нелінійною поляризацією і електромагнітним полем.

При распространении света в среде все такие явления связаны прежде всего с нелинейной зависимостью вектора поляризации среды Р от напряженности электрического поля Е световой волны. Среду мы будем предполагать однородной, не будем учитывать ее магнитные свойства и пространственную дисперсию. Если поле Е еще не очень сильное, то вектор Р можно разложить по степеням составляющих вектора Е и оборвать такое разложение на нескольких первых членах. Тогда в общем случае, когда среда анизотропна, можно написать

 //у Овечко диэлектрическая восприимчивость  обозначаетсяχ, //Дальше рассматривается случай изотропной среды(-скаляры) . Разобьем поляризацию Р на линейную и нелинейную части:  Нелинейная часть определяется выражением  , а линейная . Возьмем плоскую волну .В этом случае нелинейная добавка к поляризации среды, вычисленная в нулевом приближении, равна .Второе слагаемое гармонически меняется во времени. С ним связана генерация в нелинейной среде второй гармоники, т.е. волны с удвоенной частотой . Для нахождения поля этой гармоники, запишем систему ур. Максвелла: 

     

//для комплексной формы ур-й Максвелла для плоской волны: оператор . Например  ,

Частное решение этой системы:, . Из второго уравнения находим, что векторы E,H взаимно перпендикулярны. Аналогично из последних двух уравнений следует, что ==0, т.e. рассматриваемая плоская волна поперечна как в отношении вектора Е, так и в отношении Н. Учтя это, а также соотношение , из первых двух уравнений получим:                                                                                             Надо еще удовлетворить условию, чтобы на входе в нелинейную среду (где мы поместили начало координат) интенсивность второй гармоники обращалась в 0. Для этого к частному решению найденному выше, надо добавить общее решение соответствующей однородной системы и подобрать его амплитуду, чтобы указанное условие выполнялось. Возвращаясь снова к вещественной форме записи, таким путем получим
,где

//Закоментенныйниже текст не имеет прямого отношения к вопросу, лишь раскрывает физический смысл явления генерации 2-й гармоники

/*Таким образом вторая гармоника представляет собой наложение двух волн одной и той же частоты : вынужденной волны cos(2t-2kr) и свободно распространяющейся волны -cos(2t-2k2r). Обе волны распространяются в одном и том же направлении, но с различными фазовыми скоростями. Поэтому по мере распространения будет меняться разность фаз между ними и возникнут биения.*/

Интенсивность  второй гармоники найдется возведением в квадрат и последующим усреднением по времени .Опуская численные коэффициенты и обозначая через I интенсивность исходной волны, таким путем найдем:    ,

х - расстояние, пройденное волной. При этом в знаменателе формулы (124,4) мы пренебрегли различием между показателями преломления n() и n(2).

Когда =0,,2,… интенсивность первой гармоники обращается в нуль. Максимумы интенсивности получаются примерно посредине между минимумами. Таким образом, с возрастанием х интенсивность второй гармоники возрастает, когда  лежит приблиз. между 0 и /2, между /2 и 3/2. В этих случаях энергия переходит от исходной волны ко второй гармонике. Если же  лежит между /2 и ; 3/2 и 2…, то с возрастанием х интенсивность второй гармоники убывает. В этих случаях энергия снова возвращается от второй гармоники к исходной волне. Такой процесс перекачки энергии периодически повторяется по мере распространения исходной волны.Условие =/2 определяет расстояние х, до которого происходит перекачка энергии от исходной волны ко второй гармонике с последующим возвращением ее опять в исходную волну. Это расстояние называется когерентной длиной. Для нее из указанного условия нетрудно получить  , где -длина исходной волны, n() – ее показатель преломления, а n(2) -  показатель преломления второй гармоники. Чем больше когерентная длина, тем интенсивнее происходит перекачка энергии от исходной волны во вторую гармонику.

//Аналогичные явления имеют место и для высших гармоник(3-й, 4-й и т.д. ), но слишком малы, чтобы представлять практический интерес. Кто хочет – может упомянуть про схожее явление генерации комбинационных частот.


 

А также другие работы, которые могут Вас заинтересовать

42316. ОСНОВЫ ЦИФРОВОЙ ТЕХНИКИ 2.89 MB
  Заготовки отчетов должны содержать цель работы далее по каждому пункту задания: функции реализуемые цифровым устройством представленные в аналитической или и табличной форме их преобразования поясняющие процесс проектирования; схему спроектированного узла или устройства; в случаях оговоренных в описании временные диаграммы поясняющие работу цифрового устройства; таблицы для записи результатов экспериментов; Исследуемые цифровые узлы и устройства собираются на одном и том же закрепленном за бригадой универсальном...
42317. ДОСЛIДЖЕННЯ РЕЖИМIВ РОБОТИ ГРАФОПОБУДУВАЧА 31.5 KB
  Ознайомитися з принципом дї та системою команд графопобудувача HPGLдод. Дослiдити роботу графопобудувача в режимі емуляції. Принципи дiї та основнi команди графопобудувача.
42318. Использование шаблонов при создании презентаций 191 KB
  На панели задач щелкните на кнопке Пуск Strt. В стартовом диалоговом окне щелкните на кнопке выбора Шаблон презентации Templte и затем на кнопке ОК. Примечание: Если вы продолжаете сеанс работы после предыдущего урока щелкните на меню Файл File и затем на команде Создать New. Щелкните на вкладке Дизайны презентаций Presenttion Designs.
42319. Информационные системы и системы управления базами данных 2.77 MB
  Информационные системы и системы управления базами данных Введение Информационные системы взаимодействия видов транспорта ИСВВТ отличаются от других информационных систем ИС в основном решаемыми задачами. Поэтому в основе любой из них лежит среда хранения обработки и доступа к данным база данных;  информационные системы ориентируются на конечного пользователя не обладающего высокой квалификацией в области применения вычислительной техники. Системы управленя базами данных Любая ИС оперирует информацией о той...
42320. Базы данных реляционных и объектно-реляционных СУБД 1.19 MB
  Рассмотрим смысл этих понятий на примере отношения таблицы СТУДЕНТЫсодержащего информацию о студентах некоторого вуза табл. Тип данных определяет диапазон значений которые можно сохранить в переменной или столбце таблицы отношения а также набор операций разрешенных для данных этого типа. Например предположим что в БД кроме таблицы СТУДЕНТЫ Табл. Допустим что столбец Имя таблицы СТУДЕНТЫ и столбец ФИО таблицы ПРЕПОДАВАТЕЛИ имеют одинаковые типы данных максимальную длину в обоих столбцах используется кириллица и смысл...
42321. Архитектура баз данных и способы доступа к ним в пакете Delphi 361.5 KB
  Архитектура баз данных Современная система управления базами данных такая как InterBse SQL Server пакета Delphi или Microsoft SQL Server 2000 может поддерживать хранение и обработку множества баз данных к которым одновременно могут обращаться множество пользователей. Прежде чем учиться управлению этими базами данных познакомимся с их структурой то есть с представлением базы данных на логическом и физическом уровнях. При этом будет рассмотрен список объектов поддерживаемых базами данных InterBse SQL Server 6 сокращённо...
42322. Операции с базой данных 238.5 KB
  Операции с базой данных Цель работы Изучить операции с базами данных в целом. Получить навыки использования приложения IBExpert для создания удаления регистрации подключения извлечения метаданных резервного копирования и восстановления базы данных СУБД Firebird. Изучить SQLоператоры для создания подключения и удаления базы данных. Исходные данные Студент получает индивидуальный вариант исходных данных который используется при выполнении всех лабораторных работ.
42323. Домены. SQL-операторы для работы с доменами 135.5 KB
  Домены Цель работы Изучить типы данных Firebird. Исходные данные Вариант исходных данных с кратким описанием предметной области получен студентом при выполнении первой лабораторной работы. Эта модель стала революционным событием в развитии баз данных . Элементы реляционной модели данных и формы их представления приведены в таблице 1.
42324. Таблицы. SQL-операторы для работы с таблицами и индексами 197.5 KB
  Изучить способы создания изменения и удаления таблиц. Теоретические сведения Таблицы Tbles Firebird реляционная СУБД поэтому все данные в Firebird хранятся в виде двумерных таблиц со строками и столбцами. Основные ограничения которым должны удовлетворять таблицы: Каждый столбец в таблице имеет уникальное имя. Первичный ключ это столбец который выбран для уникальной идентификации записей базы данных строк таблицы.