17685

Принципи дії поляризаторів двопроменезаломлюючі, відбиваючі, інтерференційні дихроїчні

Доклад

Физика

Принципи дії поляризаторів: двопроменезаломлюючі відбиваючі інтерференційні дихроїчні. Поляризатори виділяють лінійну складову ел. маг. хвилі. Якість поляризатора визначається за степеню поляризації p=ImaxImin/ImaxImin. Двопроменезаломлюючі. Двоякопреломля...

Украинкский

2013-07-05

323.4 KB

9 чел.

Принципи дії поляризаторів: двопроменезаломлюючі, відбиваючі, інтерференційні дихроїчні.

Поляризатори виділяють лінійну складову ел. маг. хвилі. Якість поляризатора визначається за степеню поляризації p=(Imax-Imin)/(Imax+Imin).

  1.  Двопроменезаломлюючі.

Двоякопреломляющие призмы используют различие в показателях преломления обыкновенного и необыкновенного лучей, чтобы развести их возможно дальше друг от друга. Примером двоякопреломляющих призм могут служить призмы из исландского шпата и стекла, призмы, составленные из двух призм из исландского пшата со взаимно перпендикулярными оптическими осями. Для первых призм обыкновенный луч преломляется в шпате и стекле два раза и, следовательно, сильно отклоняется, необыкновенный же луч при соответствующем подборе показателя преломления стекла n () проходит призму почти без отклонения.

Для вторых призм различие в ориентировке оптических осей влияет на угол расхождения между обыкновенным и необыкновенным лучами.

 

Тут нема явища повного внутрішнього видбиття. Для цих призм недостатній кут падіння і тому проміні просто розділяються. Використовують для порівняння о та е компонент.

  1.  Відбиваючі.

Принцип дії відбиваючого поляризатора розглянемо на прикладі призми Ніколя.

Подвійна стрілка вказує положення головної оптичної осі. Промінь світла всередині кристалу розділяється на звичайний о і незвичайний е.  Кути в призмі розраховані таким чином, щоб звичайний промінь відбився на межі ісландський шпат-канадський бальзам і поглинувся на бічній грані, а незвичайний пройшов без відбиття. В результаті на виході отримаємо лінійно поляризоване світло.

  1.  Інтерференційні.

 

Між двома призмами наносять багатошарову систему з послідовності плівок з малим(MgF2, SiO2) та великим(TiO2, ZnS) показником заломлення.

Приблизно 11 шарів, кожний з яких є .

 

Це найбільш сучасні та дешеві пристрої p=99,9%

Недолік, малий кут поле зору 60

  1.  Дихроїчні.

Властивість дихроїзму має турмалін. Турмалін являє собою двопроменезаломлюючий кристал, в якому один з променів (звичайний) заломлюється значно сильніше, ніж інший. Тому на виході отримаємо промені з високим порядком різниці інтенсивності.  Якщо взяти достатньо товсту платівку, то звичайний майже повністю поглинеться нею і на виході буде лінійно поляризоване світло.

Для деяких інтервалів видимого спектру і незвичайний промінь зазнає значного поглинання, і турмалін при заданій товщині стає забарвленим.

Різниця в поглинанні променів різної поляризації призводить до відмінності в поглинанні природного світла в залежності від напряму його поширення. Така відмінність зумовлює те, що кристал по різних напрямах стає по-різному забарвленим. Це явище носить назву дихроїзму.

молекул по поверхні p<103. Також під дією світла та тепла ці плівки руйнуються. Викорустовують ще як світлофільтр для зменьшення бліків у фотографії, зменшення динамічного діапазону при фотогрофуванні у горах.


 

А также другие работы, которые могут Вас заинтересовать

81448. Понятие о метаболизме и метаболических путях. Ферменты и метаболизм. Понятие о регуляции метаболизма. Основные конечные продукты метаболизма у человека 105.69 KB
  Обычно в метаболических путях есть ключевые ферменты благодаря которым происходит регуляция скорости всего пути. Регуляция количества молекул фермента в клетке Известно что белки в клетке постоянно обновляются. Регуляция синтеза белка может происходить на любой стадии формирования белковой молекулы. Что касается распада ферментов то регуляция этого процесса менее изучена.
81449. Исследования на целых организмах, органах, срезах тканей, гомогенатах, субклеточных структурах и на молекулярном уровне 104.98 KB
  в биохимии всё шире применяются методы молекулярной и клеточной биологии в особенности искусственная экспрессия и нокаут генов в модельных клетках и целых организмах см. Определение структуры всей геномной ДНК человека выявило приблизительно столько же ранее неизвестных генов и их неизученных продуктов сколько уже было известно к началу XXI века благодаря полувековым усилиям научного сообщества. Искусственая экспрессия ранее неизвестных генов предоставила биохимикам новый материал для исследования часто недоступный традиционными методами....
81450. Эндэргонические и экзэргонические реакции в живой клетке. Макроэргические соединения 126.67 KB
  Многие из этих реакций происходят при участии аденозинтрифосфата АТФ играющего роль сопрягающего фактора. При сопряжении процессов 1 и 2 в реакции катализируемой гексокиназой фосфорилирование глюкозы легко протекает в физиологических условиях; равновесие реакции сильно сдвинуто вправо и она практически необратима...
81451. Дегидрирование субстрата и окисление водорода (образование Н2О) как источник энергии для синтеза АТФ. НАД- и ФАД-зависимые дегидрогеназы, убихинон-дегидрогеназа, цитохромы и цитохромоксидаза 152.07 KB
  Электроны обладающие высоким энергетическим потенциалом передаются от восстановленных коферментов NDH и FDH2 к кислороду через цепь переносчиков локализованных во внутренней мембране митохондрий. Они катализируют реакции типа: RCHOHR1 ND↔ RCOR1 NDH Н. Однако возможно включение электронов с NDPH в ЦПЭ благодаря действию пиридиннуклеотид трансгидрогеназы катализирующей реакцию: NDPH ND NDP NDH. К FMNсодержащим ферментам принадлежит NDHдегидрогеназа которая также локализована во внутренней мембране митохондрий; она...
81452. Окислительное фосфорилирование, коэффициент Р/О. Строение митохондрий и структурная организация дыхательной цепи. Трансмембранный электрохимический потенциал 107.79 KB
  Синтез АТФ из АДФ и Н3РО4 за счёт энергии переноса электронов по ЦПЭ называют окислительным фосфорилированием. В совокупности электрический и концентрационный градиенты составляют электрохимический потенциал ΔμН источник энергии для синтеза АТФ. Энергия электрохимического потенциала ∆μH используется для синтеза АТФ если протоны возвращаются в матрикс через ионные каналы АТФсинтазы. Строение АТФсинтазы и синтез АТФ АТФсинтаза НАТФаза интегральный белок внутренней мембраны митохондрий.
81453. Регуляция цепи переноса электронов (дыхательный контроль). Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторная функция тканевого дыхания 104.8 KB
  Скорость использования АТФ регулирует скорость потока электронов в ЦПЭ. Если АТФ не используется и его концентрация в клетках возрастает то прекращается и поток электронов к кислороду. С другой стороны расход АТФ и превращение его в АДФ увеличивает окисление субстратов и поглощение кислорода. Механизм дыхательного контроля характеризуется высокой точностью и имеет важное значение так как в результате его действия скорость синтеза АТФ соответствует потребностям клетки в энергии.
81454. Нарушения энергетического обмена: гипоэнергетические состояния как результат гипоксии, гипо-, авитаминозов и других причин. Возрастная характеристика энергетического обеспечения организма питательными веществами 102.97 KB
  Все живые клетки постоянно нуждаются в АТФ для осуществления различных видов жизнедеятельности. Клетки мозга потребляют большое количество АТФ для синтеза нейромедиаторов регенерации нервных клеток поддержания необходимого градиента N и К для проведения нервного импульса; почки используют АТФ в процессе реабсорбции различных веществ при образовании мочи; в печени происходит синтез гликогена жиров белков и многих других соединений; в миокарде постоянно совершается механическая работа необходимая для циркуляции крови; скелетные мышцы в...
81455. Образование токсических форм кислорода, механизм их повреждающего действия на клетки. Механизмы устранения токсичных форм кислорода 135.17 KB
  Механизмы устранения токсичных форм кислорода. В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода.
81456. Окислительное декарбоксилирование пировиноградной кислоты. Последовательность реакций. Строение пируватдекарбоксилазного комплекса 123.64 KB
  Превращение пирувата в ацетилКоА описывают следующим суммарным уравнением: СН3СОСООН ND HSKo → CH3CO ∼SKo NDH H CO2 В ходе этой реакции происходит окислительное декарбоксилирование пирувата в результате которого карбоксильная группа удаляется в виде СО2 а ацетильная группа включается в состав ацетил КоА. FD ND и КоА. Окислительное декарбоксилирование пирувата Превращение пирувата в ацетилКоА включает 5 стадий Стадия I. На стадии III КоА взаимодействует с ацетильным производным Е2 в результате чего образуются ацетилКоА...