17746

Общие сведения о гидравлических машинах ДВС; конструктивные схемы и принцип действия

Лекция

Производство и промышленные технологии

Лекция 1. Общие сведения о гидравлических машинах ДВС; конструктивные схемы и принцип действия. Классификация насосов ДВС и ЭУ с ДВС. Динамические насосы ДВС. Общие сведения о гидравлических механизмах ДВС К гидравлическим относятся машины работающие на несжимаем

Русский

2013-07-05

453.5 KB

19 чел.

Лекция 1. Общие сведения о гидравлических машинах ДВС; конструктивные схемы и  принцип действия. Классификация насосов ДВС и ЭУ с ДВС. Динамические насосы ДВС.

 Общие сведения о гидравлических механизмах ДВС

К гидравлическим относятся машины, работающие на несжимаемых жидкостях. Это вода, масло и воздух в том случае, если его сжимаемостью можно пренебречь. Последнее обычно применимо к вентиляторам, в которых и плотность воздуха изменяется незначительно. К гидравлическим машинам относятся насосы, гидравлические двигатели, гидравлические муфты и гидравлические трансформаторы.

Насосами называют гидравлические машины, предназначенные для сообщения энергии несжимаемым жидкостям и для их перемещения.

Вентиляторы предназначены для перемещения воздуха и сообщения ему энергии.

Гидравлическими двигателями  (гидродвигателями) называются машины, воспринимающие энергию от несжимаемых жидкостей и сообщающие её исполнительным механизмам (потребителям).

Гидравлическими муфтами называют механизмы, предназначенные для разобщения и соединения ведущего и ведомого валов без изменения частоты  и направления вращения ведомого вала. Гидромуфта состоит из объединённых в одном механизме насоса и гидравлического двигателя.

Гидравлическим трансформатором  называют механизм, предназначенный для передачи крутящего момента от ведущего вала к ведомому с возможностью изменения его частоты и направления вращения. Гидротрансформатор состоит из объединённых в одном механизме насоса, гидравлического двигателя, аппарата для изменения условий подвода жидкости к гидродвигателю, охладителя гидравлической жидкости.

 

Классификация насосов.

Насосы, применяемы в системах ДВС,  весьма разнообразны по устройству, назначению, виду привода и ряду других признаков. Существующее разнообразие целесообразно рассматривать системно, основываясь на приведенной ниже классификации этих машин.

В соответствии с  предлагаемой классификацией (далеко не полной, но достаточной для основного представления) все насосы  делят на подгруппы в зависимости  от следующих определяющих признаков:

– по способу сообщения энергии жидкости;

– по назначению;

 – по особенностям конструкции  рабочих органов или по особенности совершения рабочего процесса;

 – по числу ступеней;

 – по виду привода.

По способу сообщения энергии жидкости все насосы делятся на две группы: насосы динамические и насосы объёмные. В динамических насосах передача энергии потоку жидкости обеспечивается путём взаимодействия с ним движущихся лопаток насоса, погружённых в жидкость. Динамические насосы сообщают энергию жидкости в кинетической (динамической) форме (поток жидкости приобретает увеличенную скорость), далее энергия потока частично преобразуется в статическую форму (скорость уменьшается, давление возрастает). Объёмные насосы сообщают энергию жидкости  в процессе её вытеснения из замыкаемого объёма. Энергия обычно передаётся жидкости преимущественно в статической форме (давление жидкости возрастает при сравнительно малом увеличении скорости потока). Соотношение видов энергии в потоке здесь сильно зависит от сопротивления выходу жидкости из замыкаемого объёма. При минимальном сопротивлении на выходе  жидкость будет просто перемещаться насосом без существенного роста давления. Как видно, в объёмных насосах принципиально возможно сообщение энергии жидкости преимущественно и в кинетической форме, но такие режимы работы для объёмных насосов с механическим приводом не характерны.

По назначению насосы ДВС  и энергетических установок (ЭУ) с ДВС делятся на:

– насосы охлаждающие внутреннего и внешнего контуров ДВС (насос пресной и забортной воды);

– насосы масляные циркуляционные ДВС (возможны насос маслооткачивающий и нагнетатательный); эти насосы обеспечивают работу системы смазки двигателя;

– насос маслопрокачивающий ДВС (маслозакачивающий насос или МЗН); насос обеспечивает предпусковую прокачку маслом системы смазки;

–  насос точечной смазки ДВС (насос дозированной смазки или лубрикатор); обеспечивает подачу смазки дозированными порциями в заданные моменты времени в специальные точки смазки двигателя;

– насосы масляные  турбокомпрессоров; обеспечивают смазку подшипников турбокомпрессоров ДВС большой мощности;

– насос топливный высокого давления (ТНВД); обеспечивает дозированную подачу дизельного топлива с очень высоким давлением через форсунки в цилиндры дизельных ДВС в заданные моменты времени;

–  топливный насос; обеспечивает подачу лёгкого топлива со средним давлением к форсункам (инжекторам) двигателей принудительного  зажигания;

– топливоподкачивающие насосы; обеспечивают подачу топлива из топливного бака на всасывание к ТНВД; возможно применение и с топливными насосами для лёгкого топлива, для карбюраторных двигателей, где нет топливного насоса, подают топливо в карбюратор;

– насосы охлаждения и смазки компрессорных машин ЭУ с ДВС; эти насосы аналогичны перечисленным выше насосам ДВС;

– топливные насосы котлоагрегатов ЭУ с ДВС; обеспечивают подачу топлива к форсункам вспомогательных котлов, используемых в ЭУ с ДВС;

– водяные насосы котлоагрегатов; для крупных котлов делятся на питательные, конденсатные и бустерные; питательные подают воду в барабан котла; конденсатные откачивают конденсат из конденсатора в тёплый ящик;  бустерные подают воду из тёплого ящика на всасывание питательного насоса;

– насосы исполнительных механизмов; применяются в сравнительно сложных энергетических установках с двигателями средней и большой мощности для обеспечения работы гидравлических систем в цепях управления или технологических системах;

– насосы гидроприводов; применяются в составе гидромуфтили гидротрансформаторов;

Для специфических энергоустановок (судовых, стационарных, транспортных и других возможных) приведенный перечень будет расширен в связи с необходимостью обеспечения специфических функций. Так, например, для судовых энергетических установок в машинном отделении устанавливаются топливоперекачивающие и маслоперекачивающие насосы, обеспечивающие работу судовых систем хранения топлива и масла. На судах обязательна установка пожарного насоса для тушения возможных пожаров. Для удаления больших масс воды при аварии судна устанавливается водоотливной насос. Функции этих насосов могут быть объединены. Для регулярной откачки загрязнённых вод, скапливающихся под сланями в машинном отделении, в сборную цистерну устанавливается осушительный насос. Вне машинного отделения могут устанавливаться балластные насосы для приёмки и удаления жидкого балласта. Грузовые насосы используют для приёмки и удаления жидких грузов. Кроме них на судах устанавливают санитарные насосы для обеспечения бытовых нужд экипажа и фекальные насосы для удаления фекальных масс в специальную цистерну. Этот, весьма неполный перечень, свидетельствует о большом количестве и разнообразии дополнительно применяемых насосов в сложных энергетических установках.   

 По конструкции рабочих органов и по особенности совершения рабочего процесса  

Динамические (лопаточные) насосы ДВС делят на центробежные, диагональные, вихревые и осевые. К динамическим насосам можно отнести и так называемые струйные аппараты (называемые также эжекторами и инжекторами), у которых отсутствуют рабочие органы, но которые имеют одинаковое с динамическими насосами назначение и близкий способ сообщения энергии жидкости.   

Объёмные насосы ДВС делят на поршневые, плунжерные, шестерённые, винтовые, роторно-пластинчатые.

По числу ступеней насосы могут быть одноступенчатыми, двухступенчатыми и многоступенчатыми. В составе ДВС, как правило, применяются одноступенчатые насосы.

По виду привода различают насосы автономные и навесные. Если жидкость от насоса не используется для обеспечения работы двигателя, приводящего насос в действие, то такой насос считается автономным. В ином случае насос считается навесным. Кроме того, в зависимости от данного признака выделяют ти двигателя, который выступает в качестве привода насоса. Соответственно различают электронасосы, дизельнасосы (привод от дизельного двигателя), бензонасосы (привод от бензинового двигателя), турбонасосы (привод от турбины), паронасосы (привод паровая машина),  ручные насосы.

В настоящее время в двигателестроении нет регламентированного принципа классификации насосов и, соответственно, нет принципа стандартного обозначения насосов в соответствии с их отличительными (классификационными) особенностями. В практике заводских маркировок насосов ЭУ с ДВС нередко используют указания на особенности конструкции насосного агрегата, на род привода, на величину создаваемого напора, на ориентацию ротора насоса относительно горизонта и т.п. Вместе с тем по заводскому наименованию насоса трудно судить о его особенностях. Для этого чаще всего необходимо располагать его техническим описанием.  

Рассмотрим устройство и принцип действия основных типов рассмотренных насосов одновременно с общей характеристикой их применения. Вначале рассмотрим группу лопаточных насосов.

Динамические насосы.

Центробежный насос имеет наибольшее распространение на ДВС и в ЭУ с ДВС (см. рис. 1). Основным рабочим органом насоса является центробежное колесо 6, которое образовано задним 3 и передним 5 дисками, между которыми находятся рабочие лопатки колеса 2. В данном насосе эти лопатки на виде справа (в плане) имеют изгиб, противоположный направлению вращения (загнуты назад). Такой изгиб лопаток увеличивает КПД насоса и распространён в насосах средней и большой производительности. Для малых насосов и в некоторых других случаях возможно применение радиальных лопаток. Колесо насажено на приводной вал, который подходит к колесу через отверстие в корпусе. Отверстие имеет уплотнение для предотвращения утечек. Жидкость поступает в колесо через всасывающий патрубок 1, а выходит из него через щель между двумя дисками на наружном диаметре колеса. Вылетающая из диска жидкость собирается спиралевидной улиткой-сборником 4, охватывающей колесо по периметру. Из улитки жидкость поступает в нагнетательный патрубок 7, откуда направляется к потребителю.  Для того, чтобы этот насос начал работать, его колесо и всасывающий канал должны быть полностью заполнены водой. При вращении колеса вода, находящаяся в межлопастных каналах, будет вовлечена лопатками в окружное движение. Возникающая при этом центробежная сила будет перемещать частицы по радиусу при одновременном вращательном движении. В связи с удалением из межлопаточных каналов колеса порций жидкости под действием описанного процесса, во входной части колеса возникает область пониженного давления. В эту область из всасывающего патрубка будут перемещаться новые порции жидкости под действием более высокого давления во всасывающем патрубке, чем во входной области колеса. Этот процесс происходит непрерывно. Порции жидкости в колесе под воздействием рабочих лопаток получают кинетическую энергию и соответственно увеличивают свою абсолютную скорость. В относительном движении по каналам колеса эти порции перемещаются от меньших поперечных сечений каналов к большим, что вызывает уменьшение относительной скорости движения порций  при одновременном увеличении их абсолютной скорости.  Вылетающие из колеса порции жидкости продолжают замедлять свою скорость, уже в абсолютном движении, из-за перемещения по каналу, сечение которого расширяется в направлении движения потока жидкости. Замедление скорости течения, в соответствии с законами гидромеханики, сопровождается ростом давления жидкости или преобразованием кинетической энергии в потенциальную. В результате на выходе из насоса потребитель получает поток с заданным избыточным давлением и сравнительно низкой скоростью, приемлемой для использования в системах, где применяются такие насосы.

Центробежные насосы используют для перекачки невязких жидкостей (воды, тосолов, антифризов, лёгкого топлива). Допустимо перекачивание жидкостей с загрязнителями (взвесями). Центробежные насосы ДВС  обычно рассчитаны на работу при температурах жидкости до 105 оС. Они могут обеспечивать расходы жидкости в диапазоне 8…850 м3/ч и удельную работу в одной ступени 170…800 Дж/кг, при примерной частоте вращения 800…6000 об/мин, что  соответствует диапазону коэффициента быстроходности ns  = 40…300.

По назначению эти насосы используются в основном как циркуляционные в системах охлаждения, в качестве пожарных, водоотливных, санитарных, фекальных. Возможно их использование как грузовых, балластных, топливоперекачивающих.

Рис. 1. Схема одноступенчатого  центробежного насоса

Рис.2. Общий вид одноступенчатого центробежного насоса: 1 – корпус; 2– рабочая лопатка; 3 – улитка; 4 – приёмный патрубок; 5 – переднее щелевое уплотнение колеса; 6 – нагнетательный патрубок; 7 –  торцевое уплотнение вала; 8 – приводной вал

Могут работать как питательные, конденсатные и бустерные для больших котлоагрегатов. Могут выполняться одно- и многоступенчатыми (последние в качестве пожарных или насосов для котлоагрегатов), а также одно- и двухпоточными (реже многопоточными). В многоступенчатом насосе число ступеней соответствует числу последовательно соединённых колёс, в двухпоточном (многопоточном) колёса включаются параллельно (см. рис. 3). По виду привода насосы бывают навесными и автономными. Автономные насосы могут иметь любой вид двигателя в качестве привода, в зависимости от назначения и условий применения.

Рис. 3. Схемы соединения колёс в двухступенчатом а) и в двухпоточном б) насосах

Диагональные насосы по конструктивной схеме близки к центробежным. Они отличаются более широкими лопатками рабочего колеса, которые в меридианном сечении имею не радиальное направление, а диагональное, отклонённое к оси вращения. Эти насосы являются как бы промежуточной формой между центробежными и осевыми насосами. Они предназначены для обеспечения относительно более высоких расходов и относительно меньших удельных работ, чем центробежные насосы.  

Вихревые насосы можно разделить на два типа: открыто-вихревые и закрыто-вихревые (рис 4). Основным типом является закрыто-вихревой насос. Он состоит из корпуса 1 и рабочего колеса 2. Рабочее колесо представляет собой диск постоянной толщины, на периферии которого расположены короткие лопасти, разделенные перегородкой на две части. Лопасти выполняют радиальными, наклоненными вперед и назад, под углом к перегородке β1 = 60…90° (см. рис.4). Входное 5 и напорное 4 окна размещают в корпусе насоса напротив торцов лопастей. Окна соединяются периферийно-охватывающим каналом 3, идущим по наружному диаметру колеса. Входное и напорное окна отделены перемычкой, имеющей небольшой осевой и радиальный зазоры (0,1…0,15 мм) с рабочим колесом.

Рис. 4. Закрыто-вихревой насос: а – устройство насоса; б – схема вихревого движения жидкости в насосе 

При работе насоса жидкость поступает во вращающиеся межлопастные каналы колеса из боковой части охватывающего канала корпуса, далее под действием центробежных сил проходит по радиусу через каналы колеса и вновь подается в периферийную часть охватывающего канала корпуса, откуда опять поступает в межлопастные каналы. В результате в канале возникает сложное движение жидкости, которое складывается из вихревого движения в меридианном сечении канала со скоростью cm (см. рис. 4 и 5) и движения вдоль оси канала со скоростью cu. Примерная траектория этого движения показана спиральной линией на рис 4 б. За время пребывания в канале частица жидкости несколько раз проходит через каналы колеса и каждый раз получает очередную порцию энергии. Кроме того, энергия передается жидкости переносом количества движения при вторичных движениях. Так, при вращении колеса кромки лопастей увлекают жидкость и создают турбулентный пограничный слой, в котором происходит перенос количества движения мелкими вихрями. В относительном движении кромки лопастей рабочего колеса обтекаются потоком со скоростью w = uсu. За кромкой лопасти, как плохо обтекаемым телом, возникают радиальные вихри, которые срываются с кромок лопастей и переносят   количество   движения   в   поток жидкости,    движущейся в канале   корпуса насоса. В результате описанных воздействий каждая порция жидкости постепенно «накачивается» энергией в своём спирально-вихревом движении от входного окна до напорного. В момент совмещения с открытым напорным окном порция жидкости вылетает из межлопастного канала в открывшееся пространство под действием накопленной энергии. В освободившемся от порции жидкости межлопастном канале давление падает, он  проходит через сужение корпуса к всасывающему окну, и очередная порция жидкости поступает в него из всасывающего окна под действием избыточного давления в приёмном трубопроводе, более высокого, чем в освободившемся межлопастном канале. Если обычный открыто-вихревой насос установлен выше уровня перекачиваемой жидкости, то он может начать перекачивание только в том случае, если насос и всасывающий трубопровод перед пуском будут заполнены жидкостью. Чтобы обеспечить начало работы без заполнения всасывающего трубопровода, открыто-вихревой насос должен быть оборудован дополнительным элементом (так называемым воздушным колпаком 3 (см. рис. 6), в котором имеется воздухоотвод 4).

Рис.5. Схема движения жидкости в каналах вихревого насоса: а – фрагмент меридианного сечения колеса; б – фрагмент вида на наружный диаметр колеса

При  этом режим самовсасывания (обеспечение поступления воды из ёмкости в насос и последующей перекачки жидкости без предварительного заполнения всасывающего трубопровода) может быть обеспечен только в случае предварительного заполнения жидкостью самого насоса. Обычно для пуска насоса достаточно того количества жидкости, что осталось от предыдущего пуска. В канале насоса вследствие интенсивного перемешивания образуется воздушножидкостная эмульсия. Проходя через воздухоотвод, поток эмульсии закручивается; в результате воздух под действием центробежных сил отделяется от жидкости и скапливается в центре воздухоотвода. Оттуда он по двум трубкам 19 отводится в нагнетательный трубопровод, а жидкость через отверстия между воздухоотводом и напорным окном возвращается в канал насоса, смешиваясь с газом. Этот процесс продолжается до полного удаления воздуха из всасывающего трубопровода и самого насоса. На место удаленного воздуха поступает вода и насос начинает работать в обычном режиме. Открыто-вихревой насос (см. рис. 7) имеет конструкцию, близкую к конструкции закрыто-вихревого насоса. В отличие от него колесо открыто-вихревого насоса имеет более длинные лопасти, а входное и напорное окна расположены не на периферии, а у корня лопастей. Аналогично закрыто-вихревому насосу здесь  имеется периферийно-охватывающий канал 3, проходящий в корпусе насоса напротив концов лопастей рабочего колеса. Канал начинается над входным окном 5 и заканчивается над напорным окном 4 насоса.

Рис. 6.  Закрыто-вихревой насос: 1 – рабочее колесо; 2, 18 – передняя и задняя крышки корпуса; 3 – воздушный колпак;  4 – воздухоотвод; 5 – корпус; 6 – уплотнение вала; 7 – подшипник; 8 – пробка для заливки масла; 9 – крышка задней опоры; 10 – охватывающий канал; 11 – подводящий патрубок; 12 – перемычка; 13 – напорный патрубок; 14 – пробка  для слива масла; 15 – лопатки рабочего колеса; 16 – опорная стойка; 17 – пробка для слива воды; 19 – трубка для отвода воздуха

В своей средней части канал имеет постоянную ширину B, а вблизи окон ширина канала B постепенно уменьшается до величины осевого зазора между колесом и корпусом насоса. Рабочее колесо 2 представляет собой диск постоянной толщины, на внешней  части которого расположены длинные радиальные лопасти, образующие открытые межлопастные каналы колеса. Входное 5 и напорное окна располагаются в корпусе насоса у втулки колеса и соединяются с охватывающим каналом 3 межлопастными каналами рабочего колеса. Рабочий процесс  проходит так же, как и в закрыто-вихревом насосе.

Рис.7. Открыто-вихревой насос

Если бы насос работал только на установившемся режиме, то расположение окон в нём могло бы быть таким же, как и в закрыто-вихревом насосе. Их иное расположение важно для обеспечения самовсасывания. При этом самовсасывание обеспечивается, если насос перед работой заполнен жидкостью. Чтобы она гарантированно сохранялась в насосе от предыдущих пусков, всасывающий и нагнетательный трубопроводы должны быть подведены к окнам насоса сверху. С началом вращения рабочего колеса в насосе образуется вращающееся водяное кольцо, обеспечивающее откачивание воздуха из приемного трубопровода насоса. На этом режиме насос работает по принципу действия водокольцевого компрессора (который ещё неправильно называют водокольцевым насосом), причём компрессорный процесс в данном случае организован несколько иначе, чем в обычном водокольцевом компрессоре. При вращении колеса насоса состороны внутреннего диаметра корпуса образуется жидкостное кольцо. Благодаря форме периферийно-охватывающего канала оно деформируется в районе перемычки между окнами таким образом, что объем полостей, заключенных между двумя лопатками, жидкостным кольцом и стенками корпуса, при прохождении ими всасывающего отверстия, увеличивается. Это обеспечивает всасывание воздуха. При прохождении мимо выпускного окна объем полостей уменьшается, в результате чего воздух поступает в напорный трубопровод. Высота самовсасывания вихревых насосов обычно не больше 4 м.

Вихревые насосы используют для перекачивания маловязких чистых жидкостей с коэффициентом быстроходности ns = 10…40 и в отдельных случаях при ns < 10. Насосы предназначены для малых подач 0,0002…0,010 м3/с и сравнительно высоких удельных работ 100…2000 Дж/кг при скорости вращения колеса до 150 рад/с. Вихревые насосы имеют низкий к. п. д. (0,20…0,40) и могут работать с небольшой высотой всасывания (4…5 м).

Основное достоинство вихревых насосов — малые габариты и масса. К недостаткам вихревых насосов относятся низкий к. п. д. и неуравновешенность радиальных сил, действующих на рабочее колесо. Для повышения всасывающей способности закрыто-вихревых насосов в качестве первой ступени устанавливают центробежные колеса, что позволяет повысить скорость вращения до 300 рад/с и выше. Вихревые и центробежно-вихревые насосы применяют в системах охлаждения ДВС, в санитарных системах забортной и пресной воды, в питательных системах вспомогательных парогенераторов, в рассольных системах рефрижераторных установок и других судовых системах.

Осевые насосы относятся к группе лопастных, принцип действия которых основан на силовом взаимодействии лопастей рабочего колеса с набегающим потоком. Принципиальная схема осевого насоса показана на рис. 8, а его конструкция на рис.9. В отличие от центробежных насосов в осевых насосах совершенно отсутствуют радиальные перемещения потока, следовательно, полностью исключается радиальное (центробежное) ускорение. Приращение давления в осевом насосе происходит в результате преобразования кинетической энергии в потенциальную  благодаря использованию диффузорного эффекта. Но диффузорные потоки, как известно, устойчивы лишь при соблюдении определенных условий и, прежде всего, закона изменения величины поперечного сечения потока по длине межлопаточного канала dF/dL. Нарушение условий протекания ведет к отрыву пограничного слоя от поверхностей межлопастных каналов и полному переформированию потока. Поэтому к проектированию и изготовлению осевых насосов следует предъявлять более высокие требования, чем к проектированию центробежных насосов.

Особенностью осевых насосов является их способность обеспечивать большие подачи жидкости при сравнительно малых удельных работах (около 30—120 Дж/кг) на ступень. Область применения осевых насосов лежит в диапазоне изменения коэффициента быстроходности ns от 600 до 2000. Обычно осевые насосы применяют на судах в качестве циркуляционных насосов главных конденсаторов паросиловых установок и водоотливных насосов на крупных судах. В последние годы осевые насосы используют также в качестве водометных движителей. Применение осевых насосов в системах самих ДВС проблематично в связи с отмеченными особенностями их параметров. При этом следует отметить, что осевые насосы могут применяться в виде первой ступени центробежного насоса для повышения его кавитационных качеств и увеличения КПД. В таком случае осевая приставка выполняется упрощённо и носит название шнека. Такие осецентробежные насосы могут использоваться и в системах ДВС. Наибольшее распространение на судах получили одноступенчатые осевые насосы, состоящие из приёмного патрубка, рабочего колеса К, спрямляющего аппарата СА и напорного патрубка (см. рис. 7).

Рис. 8. Схема осевого насоса

Условно обозначим эту схему К + СА (колесо и спрямляющий аппарат). Через приемный патрубок жидкость поступает к рабочему колесу в осевом направлении и под воздействием лопастей перемещается по соосным  цилиндрическим поверхностям. Приращение полной удельной энергии происходит вследствие силового взаимодействия жидкости с лопастями рабочего колеса.  Каналы между лопатками рабочего колеса могут быть расширяющимися, и тогда одновременно с увеличение кинетической составляющей энергии, в колесе будет происходить частичное преобразование кинетической энергии в потенциальную, т.е. рост давления. После рабочего колеса жидкость проходит через неподвижные лопатки спрямляющего аппарата, где происходит спрямление потока, т.е. устранение окружной составляющей скорости, и дальнейшее преобразование кинетической составляющей энергии потока в давление.

Рис. 9. Конструкция одноступенчатого осевого насоса

Конец лекции 1


 

А также другие работы, которые могут Вас заинтересовать

68598. Программирование рекурсивных алгоритмов 38.5 KB
  Если функция вызывает себя в стеке создается копия значений ее параметров как и при вызове обычной функции после чего управление передается первому исполняемому оператору функции. При завершении функции соответствующая часть стека освобождается и управление передается вызывающей функции выполнение...
68599. Исследование способов работы с функциями 60.5 KB
  В данной функции значения переменных x и y являющихся формальными параметрами меняются местами но поскольку эти переменные существуют только внутри функции chnge значения фактических...
68600. Использование функций для решения прикладных задач 61.5 KB
  Цель занятия: Совершенствование навыков разработки программ в среде программирования MS Visual C++ Совершенствование навыков использования циклов и ветвлений в программах Получение начальных навыков в объявлении и использовании функций.
68601. Обработка одномерных массивов. Организация ввода-вывода и обработки массива 43 KB
  Освоение способов описания массива, приобретение навыков организации ввода-вывода и обработки массива. Выполнение работы: в соответствии с вариантом составить и реализовать программы. Задание I Даны два массива разных размеров. Определить, какие элементы первого массива и сколько раз встречаются во втором массиве.
68602. Рулевое управление грузовых автомобилей с встроенным гидроусилителем 57.59 KB
  1 Усилитель тормозного привода 2 Крышка со встроенным контактом предупредительного сигнала при аварийном падении уровня тормозной жидкости F34 3 Бачок для тормозной жидкости гидравлического тормозного привода 4 Уплотнительное кольцо 5 Гайка самоконтрящаяся 20 Нм6 Штифт 7 Главный тормозной цилиндр...
68603. Рулевое управление грузовых авто с отдельно-расположенным ГУР 81.25 KB
  Конструктивные особенности Распределитель состоит из корпуса 13 и золотника 30. На внутренней поверхности корпуса золотника имеются три кольцевые канавки. Корпус золотника прикреплен к фланцу корпуса 6 шарниров. Буртик в крайних положениях упирается в торец корпуса 13 распределителя и в торец корпуса...
68604. Тормозные механизмы 64.22 KB
  Барабанный тормозной механизм состоит из следующих основных компонентов рис. Тормозной щит жестким креплением монтируется на колесной балке; на щите закреплен рабочий тормозной цилиндр. Несколько иную конструкцию имеет дисковый тормозной механизм. тормозной диск; тормозной суппорт...
68605. Информационные ресурсы. Образовательные информационные ресурсы 16.35 KB
  Образовательные информационные ресурсы. Научиться находить и использовать необходимые образовательные ресурсы по специальности. Национальные информационные ресурсы: проблемы промышленной эксплуатации.