17791

Векторний добуток двох векторів

Лекция

Математика и математический анализ

Лекція 5. Векторний добуток двох векторів Векторним добутком двох векторів і називається вектор такий що: а де; 2.60 б і ; в якщо то вектори утворюють праву трійку. Упорядкована трійка некомпланарних векторів називається правою якщо з кін

Украинкский

2013-07-05

2.87 MB

22 чел.

Лекція 5.

Векторний добуток двох векторів

Векторним добутком двох векторів  і називається вектор такий, що:

а) , де;                (2.60)

б)  і ;

в) якщо  то вектори     утворюють праву трійку.

Упорядкована трійка некомпланарних векторів називається правою, якщо з кінця третього вектора найкоротший поворот від першого вектора до другого здійснюється проти обертання годинникової стрілки.

Згідно з умовою а), вектор  тоді і тільки тоді, коли вектори  і  колінеарні. В окремому випадку. Коли який-небудь із векторів ( чи ) є нуль-вектором, то вони колінеарні, і як наслідок, . Якщо  то  чисельно дорівнює площі паралелограма, побудованого на векторах  і  проведених до спільного початку (рис. 1.28).

Векторний добуток позначається

Властивості векторного добутку.

1°. Векторний добуток двох векторів не має комутативної (переставної) властивості. Для векторного добутку справджується рівність

  Рис. 1.28      Рис. 1.29

2°. Розглянемо векторний добуток одиничних векторів координатних осей (ортів) (рис. 1.22, 1.29). Згідно з означенням векторного добутку знаходимо

 

 

 

3°. Векторний добуток має розподільну властивість відносно скалярного множника:

4°. Векторний добуток має розподільну властивість відносно векторного множника:

5°. Векторний добуток у координатній форма. Нехай задано вектор 

 

у прямокутній системі координат з ортами     Знайдемо векторний добуток цих векторів:

Враховуючи властивість 2°, дістанемо:

Отже, проекції вектора  на координатні осі дорівнюють

пр

=пр

=пр

Тоді для знаходження векторного добутку двох даних векторів маємо формулу

Приклад. Знайти векторний добуток  і

Розв’язання. Маємо

Відповідь.

Застосування векторного добутку

  1.  Обчислення площі трикутника.

Нехай дано трикутник з вершинами у точках

 і

Знайти площу трикутника АВС (рис. 1.30).

Розв’язання. Розглянемо два вектори  і , що збігається із сторонами трикутника АВС. Модуль векторного добутку  згідно з  означенням векторного добутку, дорівнює площі паралелограма  Тоді площа трикутника

Знаючи координати початку і кінця векторів  і , знайдемо ці вектори:

.

Тоді площа трикутнику

Розглянемо вектор , який дорівнює добутку векторів  і

Проекція вектора  на координатній осі будуть

 

а довжина

Тоді площа трикутника можна записати у вигляді

Розглянемо окремий випадок, коли трикутник лежить в одній з координатних площин, наприклад у площині  При цьому  а проекції вектора  дорівнюють відповідно

 

Площа трикутника, який лежить у площині   з вершинами в точках   і  дорівнює

Визначник другого порядку в останній формулі можна записати у вигляді визначника третього порядку:

Тоді площа трикутника з вершинами  у точках , і  може бути виражена формулою

Аналогічно можна записати формули площ трикутників, які лежать у координатних площинах  і .

Приклад. Знайти площу трикутника, вершини якого розміщено в точках ,  і .

Розвзання. Маємо

тоді

(кв. од.).

2. Умова паралельності (колінеарності, або лінійної залежності) двох векторів.

Два вектори тривимірного простору, що відмінні від нуль-вектора, паралельні тоді і тільки тоді, коли їхній векторний добуток дорівнює нуль-вектору.

а) Нехай вектори  і  паралельні, тоді , де  – деяке дійсне число, або

Тоді

б) Нехай векторний добуток , тоді , тобто .

3.Момент сили відносно полюса.

Відомо, що момент сили  відносно полюса (точки) О дорівнює векторному добутку радіус-вектора точки прикладення сили на вектор сили (рис. 1.31, а,б):

Добуток трьох векторів.

Змішаний добуток і його властивості

Послідовність множення трьох векторів   і  можна здійснити різними способами.

1. Можна два перших вектори  і  перемножити скалярно, а потім знайдене число перемножити на третій вектор . При цьому вектор  буде колінеарний вектору , тобто  де .Очевидно,

2. Можна вектори  і  перемножити векторно і знайдений вектор  помножити скалярно на вектор :

У результаті дістанемо число, яке називається змішаним добутком трьох векторів.

3. Можна два вектори  і  перемножити векторно і знайдений вектор   помножити векторно на третій вектор . Дістанемо вектор ,який називається подвійним векторним добутком даних трьох векторів:

Властивості змішаного добутку.

1°. Розглянемо три вектори ,  і , які не лежать на одній площині (рис. 1.32).

Побудуємо на цих векторах, як на ребрах, що виходить із однієї точки, паралелепіпед. Знайдемо об’єм паралелепіпеда

де Q площа основи, а Н – висота.

Згідно з означенням векторного добутку двох векторів,

Висота паралелепіпеда Н дорівнює модулю проекції вектора на вектор  :

де  – одиничний вектор векторного добутку .

Таким чином,

Отже, геометрично змішаний добуток трьох векторів   і  взятий за абсолютною величиною, є обємом паралелепіпеда, побудованого на векторах, які перемножуються, як на ребрах, що виходять з однієї точки.

2°. Змішаний добуток трьох векторів додатний, якщо розміщення векторів відповідає правій системі координат, і від’ємний, якщо розміщення векторів відповідає лівій системі координат.

Справді, якщо вектори   і  розміщенні так, як показано на рис. 1.33, а, то кут  між векторами  і  гострий, тоді  . Якщо вектори   і  розміщенні так, як показано на рис. 1.33, б, то кут  між векторами  і  тупий. Тому в першому випадку скалярний добуток  додатний, а в другому – відємний.

Таким чином

3°. Три вектори   і , відмінні від нуль-вектора, лежать на одній і тій самій площині, тобто є лінійно залежними, тоді і тільки тоді, коли їхній змішаний добуток дорівнює нулю.

Це випливає з формули (2.61).

4°. Нехай задано три вектори в координатній формі:

   

Тоді їхній змішаний добуток

Як відомо,

 

Отже,

Таким чином, змішаний добуток векторів, заданий в координатній формі, дорівнює

                                                         (2.62)

Користуючись формулою (2.62), формулу (2.61) для обчислення обєму паралелепіпеда можна записати у вигляді

де знак «+» треба брати тоді, колі значення визначника додатне, і знак «–» тоді, коли це значення відємне.

Якщо вектори  ,  (рис. 1.32) задано координатами їхніх початку і кінця, тобто точками , ,  , то

Умову компланарності трьох векторів можна записати у вигляді

або

Аналогічно знаходимо умову належності чотирьох точок , ,   тривимірного простору однієї і тієї самої площини (рис. 1.34).

Дані точки лежать в одній площині, якщо вектори   , лежать у тій самій площині, а це буде тоді й тільки тоді, коли

або

5°. Розглянемо застосування змішаного добутку векторів до обчислення обєму трикутної піраміди.

Нехай вершини трикутної піраміди (рис. 1.34) лежить у точках , ,  і . Площа трикутника  (основи піраміди) позначимо через Q, а її висоту |DO| – через Н. Обєм піраміди

Знайдемо вектори:

Тоді

а

Таким чином,

Тобто об’єм трикутної піраміди дорівнює 1/6 модуля змішаного добутку векторів, які збігаються з ребрами піраміди, що виходять з однієї і тієї самої вершини:

Приклад. Визначити, чи будуть лінійно залежними вектори

 

Розвязання. Обчислимо змішаний добуток векторів   і

тобто дані вектори лінійно залежні.

Подвійний векторний добуток

Нехай задано три вектори   і . Розглянемо їхній добуток  

.

Позначимо , тоді . Можна показати, що проекції     вектора  на координатні осі відповідно дорівнюють:

 

а

або

Розглянемо тепер  добуток . Маємо

Зауваження. Розглянуті в п.п. 2.19-2.20 не поширюються на випадок вектора з числом компонент .

ВПРАВИ 1. Вершини чотирикутника лежать  у точках    і

Довести, що чотирикутник  – трапеція.

2. Довести, що чотирикутник з вершинами    і  – квадрат.

3. Дано вектори   

Знайти

4. Дано вектори   

Знайти


 

А также другие работы, которые могут Вас заинтересовать

68976. Умовний оператор. Оператор вибору. Цикли 38 KB
  Виконання тіла оператора-перемикача switch починається з вибраного таким чином оператора і продовжується до кінця тіла або до тих пір, поки який-небудь оператор не передасть управління за межі тіла. Оператор, наступний за ключовим словом default, виконується, якщо жодна з...
68977. Одновимірні та багатовимірні масиви 30 KB
  Відповідно до синтаксису Сі в мові існують тільки одновимірні масиви, проте елементами одновимірного масиву, у свою чергу, можуть бути масиви. Тому двовимірний масив визначається як масив масивів. Таким чином, в прикладі визначений масив Z з 13 елементів-масивів, кожний з яких...
68978. Вказівники. Функції динамічного розподілу пам’яті 37 KB
  Кожна змінна в програмі - це об’єкт, який має ім’я і значення. За ім’ям можна звернутися до змінної і отримати (а потім, наприклад, надрукувати) її значення. Щоб отримати адресу в явному вигляді, в мові Сі застосовують унарну операцію. Вираз Е дозволяє отримати адресу ділянки пам’яті, виділеної на машинному рівні для змінної Е.
68979. Функції, їх параметри. Рекурсія. Прототипи функцій 35.5 KB
  Визначення функції Опис функції та її тип Рекурсивні функції Визначення функції. Синонімами цього іншого поняття в інших мовах програмування є процедури підпрограми підпрограми-функції процедури-функції. Всі функції в мові Сі мають рекомендуємий стандартами мови єдиний формат...
68980. Структури, об’єднання 36.5 KB
  Структура - це з’єднане в єдине ціле безліч поіменованих елементів (компонентів) даних. На відміну від масиву, який завжди складається з однотипних елементів, компоненти структури можуть бути різних типів і всі повинні мати різні імена.
68981. Рекурсивні функції і процедури, параметри-процедури 30 KB
  Тобто це є визначенням функції через цю саму функцію, У мові Паскаль рекурсивний опис функції полягає в тому, що в тілі такої функції міститься звертання до цієї ж функції. Наведемо рекурсивний опис функції п...
68982. Файли, робота з файлами 41 KB
  План заняття: Організація файлів Робота з файлами Підготовчі та завершальні операції Операції уведеннявиведення Пересування по файлу Організація файлів Є багато задач коли кількість компонентів певного типу будьякого з відомих уже нам наперед визначити неможливо то її визначають у процесі виконання програми.
68983. Текстові файли 36.5 KB
  В кінці кожного рядка є символ кінець рядка внутрішнє відображення якого залежить від реалізації. Звичайно кінець рядка це комбінація коду переведення каретки символ 13 за яким може бути код переведення рядка символ 10. Для програмування переважно немає потреби знати коди символів...
68984. Модулі. Модуль і його структура 49.5 KB
  Модуль - це сукупність сталих, типів даних, змінних, процедур і функцій, які можна використати у програмі або в іншому модулі. Сам модуль не є виконуваною програмою. Модульний підхід до проектування дає змогу розділити програму на частини, які компілюють окремо.