17794

Лінійні і квадратичні форми. Приведення квадратичної форми до канонічного вигляду

Лекция

Математика и математический анализ

Лекція 9 Лінійні і квадратичні форми. Приведення квадратичної форми до канонічного вигляду. Лінійні форми Розглянемо nвимірний евклідів простір. Поставимо у відповідність до nвимірного вектора з цього простору певне дійсне число . Дістанемо числову функцію векторн

Украинкский

2013-07-05

38.84 KB

23 чел.

Лекція 9

Лінійні і квадратичні форми. Приведення квадратичної форми до канонічного вигляду.

Лінійні форми

Розглянемо n-вимірний евклідів простір. Поставимо у відповідність до n-вимірного вектора з цього простору певне дійсне число . Дістанемо числову функцію векторного аргументу

                                                         .                                                  (5.1)

Функція (5.1) називається лінійною функцією або лінійною формою, якщо справджуються такі умови:

  1.   = ,                                                                                         (5.2)
  2.   =  + ).                                                                    (5.3)

Із цих умов дістанемо ще одну умову:

                                                     (5.4)

Якщо при цьому  то

                                                                                                       (5.5)

Враховуючи цю умову, часто замість «лінійної функції» говорять про «лінійну однорідну функцію». У одновимірному просторі лінійна однорідна функція має вигляд

Якщо задано базис , n-вимірного простору, в якому координати вектора  то

На основі рівності (5.4)

Позначимо

тоді

                                                                (5.6)

Зазначимо, що при переході від одного базису до другого лінійні форми перетворюються так само, як і вектори базису.

5.2 Квадратичні форми

Квадратичною формою називається многочлен, однорідний відносно змінних другого степеня. Наприклад,

є квадратичні форми, а вираз

вже не є квадратичною формою.

Запишемо квадратичну форму двовимірного вектора , або двох зміних:

                 .                             (5.7)

Якщо =, то

                            ,                                    (5.8) або

                                                               (5.9)

Зазначимо, що умова =  виконується завжди. Справді, нехай , тоді

при цьому

Квадратична форма трьох змінних має вигляд

              (5.10)

або

    (5.11)

Вирази (5.9) і (5.11) можна записати у вигляді

                                                                                 (5.12)

 

Остання форма запису компактніша і дає змогу узагальнення на n-вимірний випадок. Так, для n-вимірного вектора формула (5.12) набирає вигляду

                                                                                 (5.13)

Матриця

                                                                               (5.14)

називається матрицею квадратичної форми (5.13). Для матриці А завжди справджується рівність . Матриця A є симетричною.

Введемо вектор-стовпець і матрицю-стовпець:

       і        

та вектор-рядок (матрицю-рядок)

Легко помітити, що

´.

Теорема. Квадратичну форму   завжди можна подати у вигляді скалярного добутку 

                                                                                             (5.15)

Доведення проведемо на прикладі квадратичної форми двох змінних. Розглянемо квадратичну форму двох змінних. Тоді

 

Теорему доведено.

Із доведення теореми випливає, що квадратичну форму  завжди можна подати у вигляді добутку матриць X´, A, X:

                                                                                               (5.16)

Розглянемо залежність зміни матриці квадратичної форми при зміні базису. Нехай дано ортонормований базис , в якому квадратична форма задана матрицею A. Нехай здійснюється перехід до нового ортонормованого базису , в якому квадратична форма має матрицю B. Знайдемо залежність між A і B. Використавши позначення (4.15), (4.16), де П´ - це матриця-стовпець, складена із векторів , можна записати

Введемо дві системи координат (стару і нову), які відповідають двом базисам: П і П´. Розмістимо початки цих систем у одній точці і позначимо один і той самий вектор у двох базисах відповідно матрицям X і Y. Тоді

                                                         

Підставимо значення X і X у формулу (5.16):

(5.17)

але

                                                                                               (5.18)

Порівнюючи вирази (5.17) і (5.18), знаходимо

                                                                                                       (5.19)

Таким чином, при зміні базису матриця квадратичної форми у новому базисі має вигляд (5.19).

Якщо матриця квадратичної форми має діагональний вид, то квадратичну форму називають канонічною.

Канонічна квадратична форма має вигляд

                                                                              (5.20)

де – координати вектора  у новому базисі. Для форми (5.20) матриця A має діагональний вигляд, тобто

                                                                                         (5.21)

Напрями, в яких квадратична форма має вигляд (5.20), називаються головними напрямами або напрямами власних векторів.

Теорема. Із власних векторів матриці квадратичної форми можна побудувати ортонормований базис. У цьому базисі квадратична форма має канонічний вигляд.

Справді, якщо за базис вважати ортонормовану систему власних векторів, то матриця A матиме діагональний вигляд, а квадратична форма – канонічний.

Таким чином, щоб квадратичну форму привести до канонічного вигляду, потрібно:

  1.  знайти матрицю A квадратичної форми;
  2.  знайти власні числа , ,…, і власні вектори  матриці A;
  3.  записати в канонічному вигляді квадратичну форму.

Приклад. Привести до канонічного вигляду квадратичну форму

Р о з в’я з а н н я. 1) Складемо матрицю квадратичної форми

  1.  Записуємо характеристичне рівняння

=0,

звідки

Розв’язуючи останнє рівняння, знаходимо власні числа

Позначимо координати вектора у системі власних векторів матриці через  Тоді квадратична форма має вигляд

  1.  Знаходимо ортонормовані власні вектори матриці

Координати l, m, n задовільняють систему рівнянь

                                                                                       (5.22)

Покладемо  тоді система набере вигляду

Ця система має єдиний розв’язок

Значення компоненти будь-яке. Щоб вектор  був нормованим, покладемо

Маємо  Оскільки то система (5.22) набере вигляду

Звідси

Нормуючи, дістанемо

тобто

Для третього власного числа  маємо із (5.22) систему

звідси

Нормуючи  знаходимо

Тобто вектор 

Відповідь. Канонічна форма квадратичної форми

власні вектори квадратичної форми

ВПРАВА. Привести до канонічного вигляду квадратичної форми і знайти їхні власні вектори, якщо:

а) Ф𝑥, 𝑥=3𝑥2−48𝑥𝑦+27𝑦2;

б)

в)

г)


 

А также другие работы, которые могут Вас заинтересовать

64728. Извлечение информации 58 KB
  Соответствие между информационными работами информационными органами и информационными документами вторичными документами рассмотренными на прошлых лекциях можно изобразить следующей таблицей.
64729. Пособие для электромонтеров по обслуживанию и ремонту грузоподъемных машин 3.88 MB
  Механизма подъема грузозахватного органа (кроме электрических талей, оснащенных муфтой предельного момента) в его крайних верхнем и нижнем положениях. Ограничитель нижнего положения грузозахватного органа может не устанавливаться...
64730. СТАТУС И РОЛЬ ФИЛОСОФИИ В ЖИЗНИ ОБЩЕСТВА 1.91 MB
  Рациональный способ формирования философского мировоззрения сближал содержание философии с представлениями зарождающейся науки. На этом пути философия может вступать в контакт с содержанием практически любой конкретной науки.
64731. Управление банковскими депозитами (на примере Среднерусского сберегательного банка(ОАО)) 820.5 KB
  Организация работы с депозитными счетами на материалах Сберегательного банка. Организационно-экономическое устройство Сберегательного банка. Анализ финансового состояния Сберегательного банка.
64732. Українська та зарубіжна культура 437.5 KB
  Сьогодні в Україні існує релігійна течія яка пропагує повернення до язичества РУНвіра рідна українська народна віра засуджує хрещення Русі князем Володимиром Великим і власне є одною з численних спроб затримати історичний поступ і увіковічити відсталість нації.
64733. Социология как наука: структура и уровни социального знания 279.5 KB
  Однако по мере накопления знаний она постепенно теряла статус универсальной теории общества. Во-вторых представления о функционировании отдельных сфер общественной жизни: знания о социальном составе населения и социальной структуре общества знания...
64734. Планирование и анализ фармацевтической деятельности фармацевтической организации 293 KB
  Маркетинговые исследования это систематический сбор документирование и анализ данных касающихся вопросов организации сбыта товаров и услуг. Структура маркетинговых исследований В ходе маркетинговых исследований собираются первичные...
64735. Основные функции культуры 223.5 KB
  Можно говорить о функциях отдельных элементов культуры по отношению ко всей системе культуры например о функциях языка или науки в культуре. Перечень социальных функций культуры: защитная; креативная лат.
64736. ТЕОРИЯ, МЕТОДОЛОГИЯ И ФИЛОСОФИЯ ИСТОРИИ: ОЧЕРКИ РАЗВИТИЯ ИСТОРИЧЕСКОЙ МЫСЛИ ОТ ДРЕВНОСТИ ДО СЕРЕДИНЫ XIX ВЕКА 155 KB
  До того как возникла историография с собственной методологией и тем более философия и теория истории историческая мысль прошла длительный путь. Тем не менее элементы методологии часто теории а также философии истории всегда явно или скрыто присутствуют...