17794

Лінійні і квадратичні форми. Приведення квадратичної форми до канонічного вигляду

Лекция

Математика и математический анализ

Лекція 9 Лінійні і квадратичні форми. Приведення квадратичної форми до канонічного вигляду. Лінійні форми Розглянемо nвимірний евклідів простір. Поставимо у відповідність до nвимірного вектора з цього простору певне дійсне число . Дістанемо числову функцію векторн

Украинкский

2013-07-05

38.84 KB

24 чел.

Лекція 9

Лінійні і квадратичні форми. Приведення квадратичної форми до канонічного вигляду.

Лінійні форми

Розглянемо n-вимірний евклідів простір. Поставимо у відповідність до n-вимірного вектора з цього простору певне дійсне число . Дістанемо числову функцію векторного аргументу

                                                         .                                                  (5.1)

Функція (5.1) називається лінійною функцією або лінійною формою, якщо справджуються такі умови:

  1.   = ,                                                                                         (5.2)
  2.   =  + ).                                                                    (5.3)

Із цих умов дістанемо ще одну умову:

                                                     (5.4)

Якщо при цьому  то

                                                                                                       (5.5)

Враховуючи цю умову, часто замість «лінійної функції» говорять про «лінійну однорідну функцію». У одновимірному просторі лінійна однорідна функція має вигляд

Якщо задано базис , n-вимірного простору, в якому координати вектора  то

На основі рівності (5.4)

Позначимо

тоді

                                                                (5.6)

Зазначимо, що при переході від одного базису до другого лінійні форми перетворюються так само, як і вектори базису.

5.2 Квадратичні форми

Квадратичною формою називається многочлен, однорідний відносно змінних другого степеня. Наприклад,

є квадратичні форми, а вираз

вже не є квадратичною формою.

Запишемо квадратичну форму двовимірного вектора , або двох зміних:

                 .                             (5.7)

Якщо =, то

                            ,                                    (5.8) або

                                                               (5.9)

Зазначимо, що умова =  виконується завжди. Справді, нехай , тоді

при цьому

Квадратична форма трьох змінних має вигляд

              (5.10)

або

    (5.11)

Вирази (5.9) і (5.11) можна записати у вигляді

                                                                                 (5.12)

 

Остання форма запису компактніша і дає змогу узагальнення на n-вимірний випадок. Так, для n-вимірного вектора формула (5.12) набирає вигляду

                                                                                 (5.13)

Матриця

                                                                               (5.14)

називається матрицею квадратичної форми (5.13). Для матриці А завжди справджується рівність . Матриця A є симетричною.

Введемо вектор-стовпець і матрицю-стовпець:

       і        

та вектор-рядок (матрицю-рядок)

Легко помітити, що

´.

Теорема. Квадратичну форму   завжди можна подати у вигляді скалярного добутку 

                                                                                             (5.15)

Доведення проведемо на прикладі квадратичної форми двох змінних. Розглянемо квадратичну форму двох змінних. Тоді

 

Теорему доведено.

Із доведення теореми випливає, що квадратичну форму  завжди можна подати у вигляді добутку матриць X´, A, X:

                                                                                               (5.16)

Розглянемо залежність зміни матриці квадратичної форми при зміні базису. Нехай дано ортонормований базис , в якому квадратична форма задана матрицею A. Нехай здійснюється перехід до нового ортонормованого базису , в якому квадратична форма має матрицю B. Знайдемо залежність між A і B. Використавши позначення (4.15), (4.16), де П´ - це матриця-стовпець, складена із векторів , можна записати

Введемо дві системи координат (стару і нову), які відповідають двом базисам: П і П´. Розмістимо початки цих систем у одній точці і позначимо один і той самий вектор у двох базисах відповідно матрицям X і Y. Тоді

                                                         

Підставимо значення X і X у формулу (5.16):

(5.17)

але

                                                                                               (5.18)

Порівнюючи вирази (5.17) і (5.18), знаходимо

                                                                                                       (5.19)

Таким чином, при зміні базису матриця квадратичної форми у новому базисі має вигляд (5.19).

Якщо матриця квадратичної форми має діагональний вид, то квадратичну форму називають канонічною.

Канонічна квадратична форма має вигляд

                                                                              (5.20)

де – координати вектора  у новому базисі. Для форми (5.20) матриця A має діагональний вигляд, тобто

                                                                                         (5.21)

Напрями, в яких квадратична форма має вигляд (5.20), називаються головними напрямами або напрямами власних векторів.

Теорема. Із власних векторів матриці квадратичної форми можна побудувати ортонормований базис. У цьому базисі квадратична форма має канонічний вигляд.

Справді, якщо за базис вважати ортонормовану систему власних векторів, то матриця A матиме діагональний вигляд, а квадратична форма – канонічний.

Таким чином, щоб квадратичну форму привести до канонічного вигляду, потрібно:

  1.  знайти матрицю A квадратичної форми;
  2.  знайти власні числа , ,…, і власні вектори  матриці A;
  3.  записати в канонічному вигляді квадратичну форму.

Приклад. Привести до канонічного вигляду квадратичну форму

Р о з в’я з а н н я. 1) Складемо матрицю квадратичної форми

  1.  Записуємо характеристичне рівняння

=0,

звідки

Розв’язуючи останнє рівняння, знаходимо власні числа

Позначимо координати вектора у системі власних векторів матриці через  Тоді квадратична форма має вигляд

  1.  Знаходимо ортонормовані власні вектори матриці

Координати l, m, n задовільняють систему рівнянь

                                                                                       (5.22)

Покладемо  тоді система набере вигляду

Ця система має єдиний розв’язок

Значення компоненти будь-яке. Щоб вектор  був нормованим, покладемо

Маємо  Оскільки то система (5.22) набере вигляду

Звідси

Нормуючи, дістанемо

тобто

Для третього власного числа  маємо із (5.22) систему

звідси

Нормуючи  знаходимо

Тобто вектор 

Відповідь. Канонічна форма квадратичної форми

власні вектори квадратичної форми

ВПРАВА. Привести до канонічного вигляду квадратичної форми і знайти їхні власні вектори, якщо:

а) Ф𝑥, 𝑥=3𝑥2−48𝑥𝑦+27𝑦2;

б)

в)

г)


 

А также другие работы, которые могут Вас заинтересовать

73204. Второй закон термодинамики 155.5 KB
  Первое начало термодинамики ничего не говорит о направлении теплообмена – от какого из двух различно нагретых тел должна передаваться теплота. Оно допускает переход теплоты как от горячих к холодным, так и наоборот.
73206. Волновое движение 1.28 MB
  В механике волновой процесс происходит в среде, частицы которой связаны между собой упругими силами. Общий характер волновых процессов обычно рассматривается на примере возникновения и распространения механических волн.
73207. Поляризация света. Естественный и поляризованный свет 240 KB
  Поляризация света –- физическая характеристика оптического измерения описывающая поперечную анизотропию световых волн т. источниками света являются атомы а их количество в источнике N то пространственную ориентацию для произвольно выбранного момента расположение векторов источника...
73208. Дисперсия света 170.5 KB
  Под действием энергии электромагнитной волны электроны атомов, молекул и ионов среды начинают совершать гармонические колебания и становятся источником вторичных электромагнитных волн. Электроны атомов, молекул и ионов – это внешние, слабосвязанные электроны называются оптическими электронами.
73209. Тепловое излучение 162.5 KB
  Энергетической светимостью тела называется поток энергии мощность светового излучения испускаемый единицей поверхности излучающего тела по всем направлениям. Энергетическая светимость является функцией частоты длины волны и температуры тела...
73210. Квантовые свойства электромагнитного излучения 270 KB
  Столетов провел подробное исследование по изучению действия света на заряженные тела. Выводы из опытов Столетова: Под действием света вещество теряет только отрицательный заряд. Число фотоэлектронов вырываемых с катода за единицу времени пропорционально интенсивности света.
73211. Строение атома 178.5 KB
  В середине века атомистическая теория имела мало сторонников. Однако уже в начале XVIII века было показано, что многим до того времени непонятным свойствам вещества удается дать объяснение в рамках атомистической гипотезы, исходя из общих законов механики.
73212. Элементы квантовой механики, Статистическая инитериретация волны де Бройля 153.5 KB
  Однако целый ряд экспериментальных фактов заставляет признать что электрон а также и другие частицы обладают не только свойствами корпускул но и свойствами волн подобно фотонам света. Он предположил; что все частицы должны обладать волновыми свойствами подобными волновым свойствам света...