18136

Геометрическая оптика световодов

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция 2. Геометрическая оптика световодов Световод представляет собой две диэлектрические среды – сердечник и оболочку. Электромагнитные колебания распространяются по сердечнику благодаря явлению полного внутреннего отражения ПВО. Условия прохождения луча чер

Русский

2013-07-06

1.5 MB

10 чел.

Лекция 2.

Геометрическая оптика световодов

Световод представляет собой две диэлектрические среды – сердечник и оболочку. Электромагнитные колебания распространяются по сердечнику благодаря явлению полного внутреннего отражения (ПВО).

Условия прохождения луча через границу раздела двух сред описываются законом Снелиуса. На рис 2.1. показано прохождение луча через границу раздела двух сред.

n1

n2

ε1

ε2

n2

n1

ε2

ε1

  

                          

     а)                                 б)

Рис.2.1. Прохождение луча через границу раздела двух сред:

а) из менее плотной в более плотную ();

б) из более плотной в менее плотную ()

Согласно закону Снеллиуса выполняется следующее условие:

                                            (2.1)

где:

и  – показатели преломления сердечника и оболочки световода соответственно;

и – углы падения и преломления луча соответственно.

Если ,  то  при  наступает явление ПВО.  Тогда , а

- критический угол ПВО. Явление ПВО наблюдается при условии, что .

Приведенные соотношения соответствуют понятиям геометрической оптики. Исходя из соображения физической оптики при рассмотрении явления ПВО, можно прийти к выводу, что при критических углах падения лучей на границу раздела двух сред полного (100%) отражения не происходит. Это можно подтвердить, воспользовавшись формулами Френеля.

                          (2.2)

                        (2.3)

   (2.4)

           (2.5)

           (2.6)

где:

и – показатели преломления сердечника и покрытия световода;

и – коэффициенты отражения для плоскостей поляризации параллельной и перпендикулярной плоскости падения луча;

– среднее значение коэффициента отражения для неполяризованного света.

Зависимость коэффициента отражения от угла падения, рассчитанная в соответствии с формулами (2.2 – 2.6), представлена на рис. 2.2.

Рис 2.2. График зависимости коэффициента отражения от угла падения

Коэффициент отражения на границе раздела двух сред зависит также от коэффициента пространственного затухания волны, который определяется следующим соотношением:

     (2.7)

где:

– натуральный показатель поглощения среды.

На основании явления ПВО можно рассчитать числовую апертуру (NA) световода.

-k

n1

uc

u1

nn

Рис. 2.3. К расчету числовой апертуры световода

Числовая апертура в общем случае определяется согласно соотношению:

    (2.8)

С учетом рисунка 2.3, запишем:

    (2.9)

Окончательно:

        (2.10)

Соотношение (2.10) является приближенным и позволяет определить числовую апертуру световода только с учетом меридиональных лучей (таких, что пересекают ось световода). На рисунке 2.4. представлен график  зависимости числовой апертуры световода от отношения  и разных значений nс.

Рис. 2.4. График зависимости числовой апертуры от отношения

показателей преломления покрытия и сердечника

С учетом косых лучей значение числовой апертуры может быть определено из следующего соотношения:

(2.11)

                         (2.12)

где:

– числовая апертура с учетом косых лучей;

– числовая апертура с учетом меридиональных лучей.

На рисунке 2.5. показан ход косых лучей в цилиндрическом световоде.

Рис. 2.5. Ход косых лучей в цилиндрическом световоде.

На рисунке 2.6 приведен график зависимости числовой апертуры от показателя преломления () с учетом меридиональных и косых лучей.

Рис. 2.6. График зависимости числовой апертуры от показателя преломления с учетом меридиональных и косых лучей

На рисунке 2.7. приведен график зависимости отношения от различных значений показателя преломления сердцевины () и покрытия ().

Рис. 2.7. График зависимости отношения от показателей преломления сердцевины и оболочки световода.

К основным геометрическим характеристикам световода также относятся:

  1.  длина пути луча, который падает под углом к оси волокна:

        (2.13)

где:

– геометрическая длина световода.

  1.  количество отражений в световоде:

  (2.14)

где:

– диаметр сердцевины световода.

На рисунке 2.8. показан график зависимости длины пути лучей и количества отражений от угла падения лучей.

Рис. 2.8. График зависимости и от угла падения лучей

  1.  относительное изменение профиля показателя преломления:

          (2.15)

  1.  нормированная частота , определяющая тип световода:
  2.  одномодовый – ;
  3.  многомодовый – ;
  4.  неустойчивая граница - .

При неустойчивой границе тип световода определяется длиной волны излучения :

   (2.16)

  1.  критическая частота световода определяет граничную частоту электромагнитного излучения, соответствующего возможности распространения в световоде одной или более мод:

   (2.17)

  1.  длина волны среза определяет граничную длину волны излучения, соответствующую одномодовому или многомодовому режиму работы:

       (2.18)


 

А также другие работы, которые могут Вас заинтересовать

67615. Накопители на жестких магнитных дисках. Структура накопителя на жестких магнитных дисках 146 KB
  Структура накопителя на жестких магнитных дисках С конструктивной точки зрения НЖМД схожи с НГМД. Однако НЖМД содержат большее число электромеханических узлов и механических деталей изолированных в герметизированном корпусе и пакет магнитных дисков. Структура дискового пакета...
67616. Исследование движения навигационных спутников GPS 701 KB
  Навигационные определения, в частности, вычисление координат потребителя в навигационном приемнике производится с использование координат видимых пользователем навигационных спутников.
67617. Видеомониторы и видеоадаптеры. Типы видеосистем 77.5 KB
  В общем случае видеосистема (дисплей) ПЭВМ включает монитор, преобразующий сигналы от ПЭВМ в изображение на экране в темпе их поступления без запоминания и обработки; и видеоконтроллер для обработки, передачи данных и согласования интерфейсов.
67618. Устройства и системы ввода-вывода текстовой и графической информации. Принцип кодирования текстовой информации. Кодирование текстовой информации в ЭВМ 147 KB
  Текстовая информация представляется последовательностью алфавитно-цифровых символов каждый из которых определённым образом кодируется. Существуют четыре основных принципа кодирования символов. 1 где S множество всех символов используемых для кодирования текста...
67619. Устройства ввода-вывода текстовой информации с промежуточного носителя 135 KB
  ОЧА общего назначения строятся на базе сканеров для которых используется специальное математическое обеспечение для распознавания изображений IREDER. Многие алгоритмы распознавания символов работают на основе распознавания контуров поэтому контура выделяют фильтром Собеля.