18147

Способы компенсации дрейфа ВОД

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция 14. Способы компенсации дрейфа ВОД. ВОД для измерения механических величин Недостатком ВОД является дрейф нуля. Известны следующие способы компенсации дрейфа нуля: преобразование переменного тока в постоянный рис.14.1 а. При этом переменная сост

Русский

2013-07-06

2.6 MB

4 чел.

Лекция 14.

Способы компенсации дрейфа ВОД.

ВОД для измерения механических величин

Недостатком ВОД является дрейф нуля.

Известны следующие способы компенсации дрейфа нуля:

  1.  преобразование переменного тока в постоянный (рис.14.1 а)).

При этом переменная составляющая выходного сигнала датчика отделяется от постоянной. Мощность света, воспринимаемая детектором, определяется соотношением:

    (14.1)

 – среднее значение мощности лазерного излучателя.

Отделив переменную составляющую можно измерять глубину модуляции  , при этом повысится точность измерения.

Рис.14.1. Способы компенсации дрейфа датчика:

а) преобразование «переменный ток – постоянный ток»; б) метод обратной связи

  1.  метод обратной связи (рис.14.1 б)).

При этом способе постоянная составляющая выходного сигнала сравнивается с предварительно установленным опорным напряжением, и разностный сигнал применяют для обратной связи в процессе регулировки тока возбуждающего излучателя. При наличии дрейфа в этом способе стабилизируют значение . Метод применяется при определении сигнала переменного тока.

  1.  способ двух выходных световых лучей.

Применим только для ВОД, работающих с поляризованным светом (рис.14.2 в)).

Рис. 14.2. Компенсация дрейфа датчика методом двух выходных световых лучей

Мощность выходного сигнала датчика, воспринимающего световые лучи в двух взаимно-перпендикулярных  поляризованных плоскостях  определяется соотношениями:

    (14.2)

    (14.3)

В блоке обработки вычисляется следующее отношение:

           (14.4)

Выходное напряжение сигнала после обработки становится пропорциональным и не зависит от  .

  1.  метод двух длин волн (14.3).

В светочувствительную часть датчика поочередно или одновременно подаются световые сигналы с длинами волн и . Интенсивность сигнала на длине волны модулируется при измерении и сигнала, а на длине волны не модулируется. На выходе получается соотношение электрических напряжений первого и второго сигнала.

Рис. 14.3. Компенсация дрейфа датчика методом двух длин волн

ВОД для измерения механических величин

С  помощью таких ВОД  можно измерить давление, вибрации, ускорение и другие механические параметры.

Датчик для измерения давления показан на рис.14.4. Параметры датчика: диаметр жгута – до1,5мм; количество световодов – 100; толщина диафрагмы –15 мкм.

Рис. 14.4. Датчик для измерения давления ( Па)

Схема датчика, предназначенного для измерения вибрации, приведена на рис.14.5.

Рис.14.5. Схема датчика, предназначенного для измерения вибрации

Датчики давления, построенные на основе явлений ПВО и  дифракции, показаны на рис.14.6.

Рис.14.6. Датчик давления, построенный

на основе явления ПВО и дифракции

Схемы датчиков давления и ускорения на основе эффекта фотоупругости приведены на рис.14.7.

Рис.14.7. Схема датчика давления и ускорения, построенного

на основе эффекта фотоупругости

Значения постоянных фотоупругости для некоторых некристаллических материалов, применяемых в этих датчиках, приведены в таблице 14.1

Таблица 14.1.

Схема датчика ускорения с использованием туннельного эффекта показана на рис.14.8.

Рис.14.8. Схема датчика ускорения с использованием

туннельного эффекта

Световая мощность, которая измеряется с помощью  фотоприемного устройства для датчика, приведенного на рис. 14.7 определяется соотношением:  

    (14.5)

     (14.6)  

– измеряемое давление;

– полуволновое давление;

С – постоянная фотоупругости;

- длина волны излучения;

- длина материала вдоль оси датчика.

Математическая модель, которая характеризует выходной сигнал (ток фотоприемника) описывается соотношением:

  (14.7)

– мощность оптического излучения;

– функция преобразования датчика;

– величина, которая измеряется с помощью ВОД;

– внешнее влияние;  

– интегральная токовая чувствительность фотоприемника;

– коэффициент пропускания.

Для приведенных схем акселерометра их математические модели будут отличаться только функцией преобразования датчика.

Для  схемы датчика, показанного на рис. 14.7, математическая модель будет иметь следующий вид:

  (14.8)

– мощность излучателя;

– сейсмическая масса;

– измеряемое ускорение;

– постоянная фотоупругость материала;

–  длина фотоупругого материала вдоль оптической оси;

– площадь датчика под сейсмической массой; 

– реальна токовая чувствительность;

, , и – коэффициенты потерь в атмосфере, поляризационные, потери на поглощение и потери Френеля соответственно.

Конкретизированная математическая модель ВОД на основе туннельного эффекта (рис.14.8) имеет следующий вид:

    (14.9)

– коэффициенты отражения для волн, поляризованных во взаимно перпендикулярных плоскостях;

– мощность излучения, поступающего на входной торец световода;  

– мощность оптического излучения;

– мощность излучения, которое вводится в пластинку в результате нарушения явления ПВО;

- площадь входного торца фотоприемного устройства;

- площадь катетной грани призмы;

– реальна токовая чувствительность.

Связь толщины зазора между стеклянной пластиной и призмой с измеряемым ускорением имеет следующий вид:

   (14.10)

  – соответственно радиус, толщина, модуль Юнга и коэффициент Пуассона стеклянной пластины;  

– начальное значение зазора;

– сейсмическая масса;

– площадь стеклянной  пластины;

– измеряемое ускорение.

Реальная токовая чувствительность  датчика определяется следующим соотношением:

           (14.11)

– интегральная токовая чувствительность фотоприемника;

– коэффициент использования светового потока.

Величину коэффициента использования светового потока можно найти из соотношения:

   (14.12)

– спектральная характеристика светового потока излучения, падающего на  фотоприемник;

– спектральная чувствительность фотоприемника, измеренная по эталону.

Коэффициент пропускания системы может быть рассчитан с использованием матриц Мюллера. Уравнение, применяемое при этом, имеет следующий вид:

  (14.13)

и – вектора Стокса выходящего и падающего излучения;

– матрица Мюллера фазовой пластинки;

– матрица Мюллера анализатора;

– матрица Мюллера фотоупругого элемента;

– матрица Мюллера поляризатора.

Вектора Стокса имеют следующий перечень параметров:

    

и – интенсивности выходящего и падающего пучков лучей;
, и – параметры, определяющие степень и вид поляризации выходного и падающего пучков излучения.


 

А также другие работы, которые могут Вас заинтересовать

61845. Візантія в VІ- ХV столітті 71 KB
  Розглянути історичний процес розвитку Візантії звертаючи увагу на особливості пролонгованості збереження центральної влади відсутністю феодальної ієрархії та рицарського війська що і призвело до загибелі держави...
61846. Школа. Урок иностранного языка 466 KB
  In America, all children from six to sixteen go to school. They spend six years in elementary school, and four or six years in secondary or high school. School education is free.
61847. Урок как основная форма организации правового обучения в общеобразовательном учреждении 224.5 KB
  Подготовка учителя к проведению урока. Анализ урока. Сущность и назначение урока в процессе обучения как целостной динамической системы сводится к коллективно индивидуальному взаимодействию учителя и учащихся в результате которого происходит усвоение учащимися знаний умений и навыков развитие их способностей опыта деятельности общения и отношений а также совершенствование педагогического мастерства педагога. Эффективность урока – степень достижения заданной цели педагогической деятельности с учетом оптимальности необходимости и...
61848. Великие географические открытия. Открытия европейцев и создание новых колониальных государств 1.89 MB
  В ходе раскрытия темы урока учитель используя как традиционные активные и интерактивные методы обучения дает возможность осмыслить учащимся причины и предпосылки великих географических открытий пройти путь первооткрывателей новых континентов и земель вместе...
61849. Узагальнення і закріплення вивченого матеріалу. Обчислення значень виразів. Розв’язування задач 72 KB
  Мета: удосконалювати навички швидкої лічби в межах 10, закріпити уміння та навички складати та розвязувати приклади, задачі, розвивати обчислювальні вміння, логічне мислення, творчі здібності, виховувати цілеспрямованість, наполегливість.
61850. Разработка стратегии расширения сети стейк хаусов GOODMAN в интересах полного и опережающего охвата Московского рынка 4.74 MB
  Основные усилия сетевых проектов буду направлены на удержание доли рынка в виде постоянных гостей с попытками увеличить частоту посещений за счёт постоянных спецпредложений и использования современных средств коммуникации. Возможно, средний чек сегмента casual dining начнёт стремиться вниз...
61851. Океани Землі 34 KB
  Океани Землі. Де проходить межа між Європою та Азією Показати найбільший острів на Землі. Картка 2 Показати найбільший материк Землі. Більшу територію Землі займає вода.
61852. Орієнтація на вулиці. Treasure Hunt 60 KB
  Dear children, today we’ll go to the treasure. Our task is to find the treasure. You can see a large box on the chair. We have to do a lot of exercises for finding the treasure. After each exercises the way to the treasure well be shorter.
61853. Подорож довжиною у тисячоліття 636 KB
  Розвивати вміння самостійно шукати потрібну інформацію в Інтернеті вибирати основне удосконалювати навики роботи в програмі Power Point. Готуючтсь до уроку на компютері зберігаю в соціальних закладках Бобродобр соціальних сервісів...