18148

Датчики для измерения электрических величин

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция 15. Датчики для измерения электрических величин. ВОД с волокном в качестве чувствительного элемента Датчик магнитного поля на основе эффекта Фарадея Схема датчика магнитного поля на основе эффекта Фарадея показана на рис.15.1. Рис.15.1. Схема датчика магнитн...

Русский

2013-07-06

2.22 MB

13 чел.

Лекция 15.

Датчики для измерения электрических величин.

ВОД с волокном в качестве чувствительного элемента

Датчик магнитного поля на основе эффекта Фарадея

Схема датчика магнитного поля на основе эффекта Фарадея показана на рис.15.1.

Рис.15.1. Схема датчика магнитного поля

Принцип действия датчика основан на вращении плоскости поляризации элементом Фарадея под действием магнитного поля.

Угол поворота плоскости поляризации определяется из следующего соотношения:

    (15.1)

– постоянная Верде;

– напряженность магнитного поля;

– длина элемента Фарадея.

В качестве материалов для элемента Фарадея используют диэлектрики, ферромагнетики.

В диэлектриках (BSO) имеет место эффект оптической активности под влиянием эффекта фотоупругости. Угол поворота плоскости поляризации определяется следующим соотношением:

    (15.2)

– постоянная фотоактивности матариала.

Для ферромагнетиков угол поворота плоскости поляризации определяется соотношением:

       (15.3)

–магнитный поток, соответствующий состоянию насыщения;

– угол поворота плоскости поляризации при напряженности магнитного поля .

 – напряженность магнитного поля;

– длина фоточувствительного элемента.

Один из вариантов оптико-магнитной части датчика магнитного поля показано на рисунке 15.2

Рис.15.2. Оптико-магнитная часть датчика магнитного поля

Схема части магнитного датчика с объединением оптических элементов показана на рисунке 15.3.

Рис.15.3. Часть магнитного датчика с объединенными оптическими элементами

Датчик для измерения напряженности электрического поля на основе эффекта Поккельса

Структурная схема такого датчика показана на рисунке 15.4. В качестве материала в таких датчиках применяют ниабат лития

Рис. 15.4. Схема датчика для измерения напряженности электрического поля на основе эффекта Поккельса: , – главные оптические оси кристалла;

– ось, в направлении которой действует приложенное электрическое поле.

Световая мощность на выходе датчика определяется соотношением:

   (15.4)

– средняя мощность излучения источника излучения при отсутствии электрического поля;

– приложенное электрическое напряжение;

– полуволновое напряжение, при котором фаза сигнала сдвигается на . 

Величина полуволнового напряжения определяется согласно формуле:

       (15.5)

–  электрооптический коэффициент;

– показатель преломления чувствительного элемента при отсутствии приложенного напряжения.

Зависимость сдвига фазы сигнала от приложенного электрического поля имеет следующий вид:

             (15.6)

– напряженность электрического поля.

Датчик для измерения напряжения или силы тока с использованием пьезоэлемента

Схема датчика для измерения напряжения или силы тока показана на рис.15.5.

Рис.15.5. Схема датчика для измерения напряжения или силы тока с использованием пьезоэлемента: 1 – пластина пьезоэлемента;

2 – чувствительный световод; 3 – приемный световод.


ВОД с волокном в качестве чувствительного элемента

Некоторые схемы таких датчиков показаны на рисунке 15.6. 

Рис.15.6. Структурные схемы ВОД с волокном в качестве чувствительного элемента

Большинство типов этих датчиков используют различные виды волоконно-оптических интерферометров (ВОИ). Схемы некоторых ВОИ показаны на рисунке 15.7.

Рис. 15.7. Схемы ВОИ: а – кольцевой; б – кольцевой Фабри; в – Маха-Цендера;

г – Майкельсона; д – Фабри-Перро; е – с поляризованными модами

ВОД с волокном в качестве чувствительного элемента в основном реагирует на изменение фазы оптического сигнала. Эти изменения возникают при внешних воздействиях на световод, обусловленных механическими деформациями, давлением, температурой, магнитным или электрическим полем.

Изменение фазы электромагнитного излучения, распространяющегося в световоде, может быть определено из соотношения:

   (15.7)

 и – длина и изменение длины световода;

 и – постоянная распространения и ее изменение в световоде.

Изменение определяется из следующего соотношения:

      (15.8)

– отклонение показателя преломления;

– изменение радиуса сердцевины световода.

ВОД фазовой модуляции в основном строится на основе схемы интерферометра Маха-Цендера. Принцип действия основан на изменении оптической длины хода в одном из каналов, при этом регистрируемая фотодетектором мощность пропорциональна:

    (15.9)

– изменение фазы в одном из каналов.

Изменение фазы в канале можно определить пользуясь следующим соотношением:

    (15.10)

– изменение оптической длины хода луча в одном из каналов.

На этом принципе основана схема работы датчика звукового давления, которая показана на рисунке 15.8.

Рис.15.8. Структурная схема датчика звукового давления

Изменение сигнала на выходе приемника пропорционально:

   (15.11)

– мощность излучателя;

– пропускание системы;

– чувствительность фотоприемника;

– изменение фазы.

Изменение в сигнальном световоде обусловлено внешним звуковым давлением. Это изменение определяется из соотношения:

        (15.12)

– длина сигнального световода;  

– изменение звукового давления.

Звуковое давление меняет показатель преломления. Для световода изменение показателя преломления определяется из соотношения:

  (15.13)

– поперечное и продольное напряжение в световоде при воздействии внешнего давления;  

– коэффициенты фотоупругости;

– модуль Юнга.

Звуковое давление меняет также длину световода и относительное изменение длины световода определяется соотношением:

     (15.14)

,– объемный и относительный модуль упругости материала световода.

Измерение фазового сдвига излучения в световоде может быть использовано для построения ВОД ускорений – акселерометров. В качестве первичного преобразователя применяют один или два световода соединенных с инерциальной массой.

Акселерометр на базе интерферометра Маха-Цендера показан на рис.15.9.

Рис.15.9. Акселерометр на базе интерферометра Маха-Цендера:

1 – источник излучения; 2 – возбуждающий световод; 3 – сигнальный световод;

4 – рамка для крепления сигнального световода; 5 – инерциальная масса;  

6 – опорный световод; 7 – световод фотоприемника; 8 – микропроцессор; 9 – индикатор.

Относительное изменение длины световода под воздействием внешнего ускорения определяют из соотношения:

        (15.15)

 – инерциальная масса;

– модуль упругости;

– площадь поперечного сечения сигнального световода.

Если пренебречь изменением показателя преломления при продольном воздействии механических усилий, то изменение фазы в результате продольного удлинения определится следующим соотношением:

  (15.16)

– диаметр сердцевины световода.

Фазовые интерферометрические датчики могут применяться для измерения тока или напряжения. При этом используется температурный эффект, при котором под воздействием тока меняется температура сопротивления.

ВОД для измерения тока показан на рисунке 15.10.

Рис. 15.10. Структурная схема ВОД для измерения тока

Влияние температуры на изменение фазы на единицу длинны световода определяется соотношением:

       (15.17)

– волновое число;

– радиус сердцевины световода.

ВОД на базе межмодовой интерференции применяются в расходомерах – приборах для измерения расходов жидкости или газа. Схема такого датчика показана на рисунке 15.11.

Рис. 15.11. ВОД для измерения расходов жидкости или газа:

1 – источник излучения; 2 – труба, по которой протекает жидкость или газ;

3 – многомодовый световод; 4 – фотоприемное уствойство.

Изменение расхода жидкости или газа влияет на скорость распространения их внутри трубы. Изменение скорости приводит к деформации световода, а это в свою очередь влияет на постоянную распространения различных мод в световоде и меняет картину межмодовой интерференции, что регистрируется приемником 4.


 

А также другие работы, которые могут Вас заинтересовать

35041. Использование PlanTracer и RasterDesk при проектировании структурированных кабельных сетей 219.5 KB
  Идеален случай когда при строительстве или реконструкции организациягенпроектировщик создает в CDприложениях поэтажные планы с детальной прорисовкой элементов здания и всех видов коммуникаций вентиляции и кондиционирования. Вариант первый: сканирование позволяющее использовать полученное растровое изображение в качестве подложки рис. К тому же при низком качестве исходного материала синька часто используемые планы этот способ применять нельзя рис. Второй вариант – перерисовка.
35042. Project Studiocs Электрика 3.0 254.5 KB
  15 Введение Разработка компании Consistent Softwre – САПР Project Studiocs Электрика – хорошо знакома специалистам. До августа 2004 года основное внимание разработчиков было направлено на развитие существующих тогда самостоятельных модулей пакета Project Studiocs Электрика: Project Studiocs Освещение создание проектов внутреннего электрического освещения и Project Studiocs Сила создание силовой части проектов электроснабжения зданий и сооружений. В декабре 2004 года компания Consistent Softwre объявила о выходе новой версии САПР Project...
35043. CAD/CAM системы среднего уровня на примере систем Cimatron, MasterCam, Solid Edge 585.5 KB
  Реферат по САПР на тему: CD CM системы среднего уровня на примере систем Cimtron MsterCm Solid Edge.5 MsterCm. На рынке программных продуктов широко используются два типа твердотельного геометрического ядра: Prsolid CIS К наиболее известным CD CM системам среднего уровня построенным на основе ядра CIS относятся: DEM Cimtron MsterCm utoCD 2000 Powermill CDdy Brvo К наиболее известным CD CM системам среднего уровня построенным на основе ядра Prsolid относятся: ...
35044. Программное обеспечение Consistent Software ElectriCS 3D 83 KB
  Реферат на тему: Программное обеспечение Consistent Softwre ElectriCS 3D Студент: Петров И.3 Назначение ElectriCS 3D.4 Предмет автоматизации ElectriCS 3D.4 Достоинства ElectriCS 3D.
35045. Изотопы в природе 156 KB
  Основная заслуга в открытии стабильных изотопов принадлежит английскому физику Ф. он установил что инертный газ неон атомный вес – 202 является смесью двух изотопов с атомными весами 20 и 22. Ученый проводил исследования на протяжении полутора десятилетий и обнаружил 210 стабильных изотопов большинства элементов. Химические элементы как правило представляют собой смесь изотопов т.
35047. Радиоэкология и ОС 99 KB
  В него не включают поступившие в окружающую среду искусственные радиоактивные вещества от испытаний ядерного оружия и от работы предприятий ядерного топливного цикла ЯТЦ. Загрязнение биосферы радионуклидами образовавшимися при испытаниях ядерного оружия. Испытания ядерного оружия в атмосфере были начаты США в 1945 г. большинство стран подписали Договор об ограничении испытаний ядерного оружия кроме подземных.
35048. ХИМИЧЕСКИЙ СОСТАВ АТМОСФЕРЫ 170.5 KB
  Отношение содержание инертных газов в атмосфере Земли к их содержанию в солнечной системе Такое различие указывает что земная атмосфера не есть производная солнечной атмосферы а образовалась при эволюции самой Земли. Если аргон третий по объему газ атмосферы выделился из горных пород значит и остальные газы могли поступить также. Особенно сильное воздействие живые организмы оказали на состав атмосферы.
35049. ГИДРОСФЕРА 118.5 KB
  Воды Мирового океана покрывают 2 3 поверхности планеты и образуют основную массу ее водной оболочки. Воды Мирового океана составляют около 93 всех вод биосферы поэтому можно считать что химический состав гидросферы в целом определяется главным образом химическим составом океанических вод. Существует мнение и не без основания что для Земли характерно постоянное присутствие воды на её поверхности. Катионы переходили сразу в раствор поэтому воды сразу же стали солеными.