18148

Датчики для измерения электрических величин

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция 15. Датчики для измерения электрических величин. ВОД с волокном в качестве чувствительного элемента Датчик магнитного поля на основе эффекта Фарадея Схема датчика магнитного поля на основе эффекта Фарадея показана на рис.15.1. Рис.15.1. Схема датчика магнитн...

Русский

2013-07-06

2.22 MB

13 чел.

Лекция 15.

Датчики для измерения электрических величин.

ВОД с волокном в качестве чувствительного элемента

Датчик магнитного поля на основе эффекта Фарадея

Схема датчика магнитного поля на основе эффекта Фарадея показана на рис.15.1.

Рис.15.1. Схема датчика магнитного поля

Принцип действия датчика основан на вращении плоскости поляризации элементом Фарадея под действием магнитного поля.

Угол поворота плоскости поляризации определяется из следующего соотношения:

    (15.1)

– постоянная Верде;

– напряженность магнитного поля;

– длина элемента Фарадея.

В качестве материалов для элемента Фарадея используют диэлектрики, ферромагнетики.

В диэлектриках (BSO) имеет место эффект оптической активности под влиянием эффекта фотоупругости. Угол поворота плоскости поляризации определяется следующим соотношением:

    (15.2)

– постоянная фотоактивности матариала.

Для ферромагнетиков угол поворота плоскости поляризации определяется соотношением:

       (15.3)

–магнитный поток, соответствующий состоянию насыщения;

– угол поворота плоскости поляризации при напряженности магнитного поля .

 – напряженность магнитного поля;

– длина фоточувствительного элемента.

Один из вариантов оптико-магнитной части датчика магнитного поля показано на рисунке 15.2

Рис.15.2. Оптико-магнитная часть датчика магнитного поля

Схема части магнитного датчика с объединением оптических элементов показана на рисунке 15.3.

Рис.15.3. Часть магнитного датчика с объединенными оптическими элементами

Датчик для измерения напряженности электрического поля на основе эффекта Поккельса

Структурная схема такого датчика показана на рисунке 15.4. В качестве материала в таких датчиках применяют ниабат лития

Рис. 15.4. Схема датчика для измерения напряженности электрического поля на основе эффекта Поккельса: , – главные оптические оси кристалла;

– ось, в направлении которой действует приложенное электрическое поле.

Световая мощность на выходе датчика определяется соотношением:

   (15.4)

– средняя мощность излучения источника излучения при отсутствии электрического поля;

– приложенное электрическое напряжение;

– полуволновое напряжение, при котором фаза сигнала сдвигается на . 

Величина полуволнового напряжения определяется согласно формуле:

       (15.5)

–  электрооптический коэффициент;

– показатель преломления чувствительного элемента при отсутствии приложенного напряжения.

Зависимость сдвига фазы сигнала от приложенного электрического поля имеет следующий вид:

             (15.6)

– напряженность электрического поля.

Датчик для измерения напряжения или силы тока с использованием пьезоэлемента

Схема датчика для измерения напряжения или силы тока показана на рис.15.5.

Рис.15.5. Схема датчика для измерения напряжения или силы тока с использованием пьезоэлемента: 1 – пластина пьезоэлемента;

2 – чувствительный световод; 3 – приемный световод.


ВОД с волокном в качестве чувствительного элемента

Некоторые схемы таких датчиков показаны на рисунке 15.6. 

Рис.15.6. Структурные схемы ВОД с волокном в качестве чувствительного элемента

Большинство типов этих датчиков используют различные виды волоконно-оптических интерферометров (ВОИ). Схемы некоторых ВОИ показаны на рисунке 15.7.

Рис. 15.7. Схемы ВОИ: а – кольцевой; б – кольцевой Фабри; в – Маха-Цендера;

г – Майкельсона; д – Фабри-Перро; е – с поляризованными модами

ВОД с волокном в качестве чувствительного элемента в основном реагирует на изменение фазы оптического сигнала. Эти изменения возникают при внешних воздействиях на световод, обусловленных механическими деформациями, давлением, температурой, магнитным или электрическим полем.

Изменение фазы электромагнитного излучения, распространяющегося в световоде, может быть определено из соотношения:

   (15.7)

 и – длина и изменение длины световода;

 и – постоянная распространения и ее изменение в световоде.

Изменение определяется из следующего соотношения:

      (15.8)

– отклонение показателя преломления;

– изменение радиуса сердцевины световода.

ВОД фазовой модуляции в основном строится на основе схемы интерферометра Маха-Цендера. Принцип действия основан на изменении оптической длины хода в одном из каналов, при этом регистрируемая фотодетектором мощность пропорциональна:

    (15.9)

– изменение фазы в одном из каналов.

Изменение фазы в канале можно определить пользуясь следующим соотношением:

    (15.10)

– изменение оптической длины хода луча в одном из каналов.

На этом принципе основана схема работы датчика звукового давления, которая показана на рисунке 15.8.

Рис.15.8. Структурная схема датчика звукового давления

Изменение сигнала на выходе приемника пропорционально:

   (15.11)

– мощность излучателя;

– пропускание системы;

– чувствительность фотоприемника;

– изменение фазы.

Изменение в сигнальном световоде обусловлено внешним звуковым давлением. Это изменение определяется из соотношения:

        (15.12)

– длина сигнального световода;  

– изменение звукового давления.

Звуковое давление меняет показатель преломления. Для световода изменение показателя преломления определяется из соотношения:

  (15.13)

– поперечное и продольное напряжение в световоде при воздействии внешнего давления;  

– коэффициенты фотоупругости;

– модуль Юнга.

Звуковое давление меняет также длину световода и относительное изменение длины световода определяется соотношением:

     (15.14)

,– объемный и относительный модуль упругости материала световода.

Измерение фазового сдвига излучения в световоде может быть использовано для построения ВОД ускорений – акселерометров. В качестве первичного преобразователя применяют один или два световода соединенных с инерциальной массой.

Акселерометр на базе интерферометра Маха-Цендера показан на рис.15.9.

Рис.15.9. Акселерометр на базе интерферометра Маха-Цендера:

1 – источник излучения; 2 – возбуждающий световод; 3 – сигнальный световод;

4 – рамка для крепления сигнального световода; 5 – инерциальная масса;  

6 – опорный световод; 7 – световод фотоприемника; 8 – микропроцессор; 9 – индикатор.

Относительное изменение длины световода под воздействием внешнего ускорения определяют из соотношения:

        (15.15)

 – инерциальная масса;

– модуль упругости;

– площадь поперечного сечения сигнального световода.

Если пренебречь изменением показателя преломления при продольном воздействии механических усилий, то изменение фазы в результате продольного удлинения определится следующим соотношением:

  (15.16)

– диаметр сердцевины световода.

Фазовые интерферометрические датчики могут применяться для измерения тока или напряжения. При этом используется температурный эффект, при котором под воздействием тока меняется температура сопротивления.

ВОД для измерения тока показан на рисунке 15.10.

Рис. 15.10. Структурная схема ВОД для измерения тока

Влияние температуры на изменение фазы на единицу длинны световода определяется соотношением:

       (15.17)

– волновое число;

– радиус сердцевины световода.

ВОД на базе межмодовой интерференции применяются в расходомерах – приборах для измерения расходов жидкости или газа. Схема такого датчика показана на рисунке 15.11.

Рис. 15.11. ВОД для измерения расходов жидкости или газа:

1 – источник излучения; 2 – труба, по которой протекает жидкость или газ;

3 – многомодовый световод; 4 – фотоприемное уствойство.

Изменение расхода жидкости или газа влияет на скорость распространения их внутри трубы. Изменение скорости приводит к деформации световода, а это в свою очередь влияет на постоянную распространения различных мод в световоде и меняет картину межмодовой интерференции, что регистрируется приемником 4.


 

А также другие работы, которые могут Вас заинтересовать

57558. Інтегрований урок “Любить свій край – це значить все любити” (Інтеграція з біологією та географією) 69.5 KB
  Мета уроку : повторити й поглибити знання учнів про займенник як частину мови його морфологічні ознаки; з’ясувати яку синтаксичну роль виконує в реченні займенник та які існують розряди займенників за значенням...
57559. Зречення принципів та ідеалів – шлях до успіху? (Б. Брехт «Життя Галілея», І. Багряний «Тигролови») 68 KB
  Уроки літератури є ефективними, якщо вони перетворюються на уроки життя. Життя – непередбачуване, гірке і солодке, одноманітне і барвисте, часом сумне чи радісне, але дивовижне й цікаве. А найголовніше (що дуже шкода) — дається один раз.
57560. МНОЖЕННЯ ЧИСЛА 2. РIЗНОМАНIТНIСТЬ ТВАРИН I ПТАХIВ 81.5 KB
  Мета: математика: перевірити знання учнів із теми Множення числа 2, формувати уміння знаходити значення виразів, які містять табличні випадки множення числа 2, розв’язувати задачі на множення, продовжувати змінювати приклади на додавання прикладами на множення...
57561. тематика й астрономія Що спільного між заходом Сонця в Донецьку і функцією синус Мотивація і плануван. 60 KB
  За допомогою відривного календаря легко помітити момент сходу та заходу Сонця для різних міст України на кожне число кожного місяца. Перше що залежить від різниці довготи Києва та інших міст України додається до часу сходу та заходу...
57562. Поезія і музика - це завжди неповторність, якийсь безсмертний дотик до душі... 84.5 KB
  Діти сьогодні у нас незвичайний урок. Учитель музики Діти з давніхдавен люди захоплювались не лише барвами природи а й її неповторними звуками і намагались наслідувати їх у своїх музичних творах. Учитель Дійсно вершиною художньої зображальності Вівальді...
57563. Інтегрований урок: Математика. Народознавство 58 KB
  Мета: Закріпити навички додавання і віднімання круглих десятків і сотень, навчити додавати трицифрові числа виду 520+340, вдосконалювати вміння розв’язувати розширені задачі на зведення до одиниці...
57564. Математично-географічна подорож з тем «Раціональні числа» і «Гідросфера» 70.5 KB
  Навчальна: навчити застосовувати знання з тем Додатні і від’ємні числа Координатна пряма Модуль Порівняння чисел до розв’язування задач з географічним змістом; сформувати поняття болото показати причини їх утворення...
57565. Мовою математики про природу 92.5 KB
  Узагальнити й систематизувати навички виконання арифметичних дій з багатоцифровими числами; закріпити вміння розвязувати задачі, рівняння; вдосконалювати навички роботи з іменованими числами; збагачувати знання учнів цікавинками про природу. Розвивати логічне мислення, память, пізнавальні інтереси учнів...
57566. Traditional Chinese medicine 104.5 KB
  TCM therpy lrgely consists of Chinese herbl medicine cupuncture dietry therpy nd tui n mssge. Prior to this Chinese medicine ws minly prcticed within fmily linege systems. The term Clssicl Chinese medicine CCM usully refers these medicl prctices tht rely on theories nd methods dting from before the fll of the Qing Dynsty 1911.