18151

Классификация интегрально-оптических элементов и схем

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция 18. Классификация интегральнооптических элементов и схем Все интегральнооптические элементы ИОЭ разбиты на 3 класса: структурные элементы; интегральнооптические схемы первого уровня интеграции; интегральнооптические схемы второго уровня интег...

Русский

2013-07-06

1.23 MB

21 чел.

Лекция 18.

Классификация интегрально-оптических элементов и схем

Все интегрально-оптические элементы (ИОЭ) разбиты на 3 класса:

  1.  структурные элементы;
  2.  интегрально-оптические схемы первого уровня интеграции;
  3.  интегрально-оптические схемы второго уровня интеграции.

Структурные элементы – наиболее простые элементы ИОС. К этому классу относятся наиболее простые элементы, которые образуют элементарную волноводную конфигурацию. Перечень этих элементов следующий:

  1.  волноводы оптические:
  2.  полосковые;
  3.  планарные.
  4.  активные эпитаксиальные слои:
  5.  излучательные;
  6.  приемные.
  7.  волноводные переходы;
  8.  изгибы полосковые:
  9.  круглые;
  10.  параболические;
  11.  ступенчатые.
  12.  разветвление и пересечение полосковое:
  13.  Y – разветвление;
  14.  – разветвление;
  15.  Т – разветвление;
  16.  Х – пересечение.
  17.  связанные волноводы (можно передавать энергию от одного к другому):
  18.  полосковый и полосковый;
  19.  полосковый и планарный.
  20.  линзы волноводные:
  21.  линза Люнеберга;
  22.  геодезическая линза.
  23.  дифракционные решетки;
  24.  фоточувствительные волноводные слои;
  25.  буферные слои;
  26.  призмы волноводные.

С помощью этих элементов обеспечивают:

  1.  ввод излучения в схему и вывод с помощью волноводных переходов, дифракционных решеток, фоточувствительных слоев, планарных линз;
  2.  связь волновода различной ширины, глубины и высоты друг с другом (волноводные переходы);
  3.  деление мощности на два и более каналов (различные разветвления);
  4.  ответвление мод излучения из одного канала в другой (связанные оптические волноводы).

Для удобства основные структурные элементы сведены в таблицу, которая показана на рис 18.1.

Рис.18.1. Основные структурные элементы

 

Основными структурными элементами любой интегральной схемы являются волноводы. Их изготавливают из стекла, плавленого кварца, керамики.

Известны следующие варианты изготовления оптических волноводов:

  1.  полосковые:
  2.  гребенчатый;
  3.  утопленный;
  4.  погруженный.
  5.  планарные:
  6.  выступающие;
  7.  погруженные;
  8.  утопленные.

Варианты изготовления гребенчатых волноводов следующие:

  1.  распыление:
  2.  высокочастотное;
  3.  реактивное;
  4.  электронно-лучевое;
  5.  термическое.
  6.  полимеризация:
  7.  плазменная;
  8.  высокочастотная;
  9.  электронно-лучевая;
  10.  фотополимеризация;
  11.  термическая.
  12.  эпитаксия:
  13.  жидкофазная;
  14.  парофазная;
  15.  металлоорганическое осаждение;
  16.  молекулярно-лучевая.

Варианты изготовления погруженных и утопленных волноводов следующие:

  1.  диффузия;
  2.  имплантация ионов;
  3.  облучение.

Основные характеристики волноводов из ниобата лития приведены в табл.18.1.

Таблица 18.1.

Способ

Ионы оксида

Δn

α дБ/см, λ=0,63 мкм

Ионный обмен

Ag+, Te+

0.03, 0.12

0.7…1.3

Диффузия обратная

Li2O

0.003

0.1…0.3

Диффузия прямая

Ti+

0.03

0.3…1.0

Технологические приемы изготовления волноводов показаны на рис.18.2.

Рис.18.2. Технологические приемы изготовления волноводов

Изгибы полосовых волноводов

На рисунке 18.3 показан S-образный изгиб волновода с двумя секциями.

Рис. 18.3. S – образный изгиб волновода

Одним из важнейших параметров в волноводах являются потери. Если радиус изгиба определяется из неравенства:

    (18.1)

где

- расстояние вдоль подложки, при котором амплитуда волны падает в (е) раз,  то потери будут незначительными.

Связь волноводов осуществляется благодаря перекрытию электромагнитных полей в зоне изгиба и определяется соотношением:

        (18.2)

где  

, – значения показателей преломления волновода в зоне изгиба

Волноводные разветвления

Разветвление и пересечение полосковых волноводов используется для деления световой мощности, фильтрации и преобразования мод.

Y – разветвления могут быть симметричными и несимметричными. При больших углах и , и при неравенстве этих углов оптическая мощность делится несимметрично. При малых углах и при разных значениях ширины полосковых волноводов всегда находятся углы и , при которых мощности будут равны.

Разветвитель Т – типа позволит разделить мощности в соотношениях:   0,75:1;   1:1;   1:0,75.

Рис. 18.4. Волноводные разветвления и пересечения.

Х – пересечение может быть использовано в качестве переключающего канала с использованием эффекта Покельса и явления ПВО.

Связанные волноводы

Волноводы такого типа показаны на рисунке 18.5.

Рис. 18.5. Связанные полосковые волноводы.

Волноводные линзы

К волноводным линзам относят:

  1.  линзу Люнеберга;
  2.  геодезическую линзу.

Линза Люнеберга – это часть сферы на поверхности световода. Недостаток такой линзы определяется трудностью подбора материала с показателем преломления больше чем у волновода.

Параметры линзы Люнеберга:

 

Геодезическая линза представляет собой углубление или возвышение над поверхностью подложки, поэтому ее свойства не зависят от показателя преломления. Если углубление напыляется зеркальным покрытием, тогда у линзы отсутствует хроматизм.

Параметры геодезической линзы:

Дифракционные решетки

Дифракционные решетки применяются для двух целей:

  1.  для ввода излучения в волновод;
  2.  для образования резонатора на поверхности волновода.

На рисунке 18.6 показаны дифракционные решетки.

Рис. 18.6. Дифракционные решетки

Применяются два типа резонаторов на базе дифракционных решеток, которые показаны на рисунке 18.7:

  1.  резонатор с распределенным Брэгговским отражением (РБО);
  2.  резонатор с распределенной обратной связью (РОС).

Рис. 18.7. Резонаторы на базе дифракционных решеток

Дифракционные волноводные линзы

Дифракционные волноводные линзы могут располагаться в параллельных пучках и в наклонных пучках.

В параллельных пучках используют линзы следующего типа:

  1.  Френелевская дифракционная линза;
  2.  Брегговская дифракционная линза.

В наклонных пучках используются линзы следующего типа:

  1.  прямые с переменным шагом;
  2.  искривленные с переменным шагом.

На рисунке 18.8 показаны дифракционные волноводные линзы приведенных выше типов.

Рис. 18.8. Дифракционные волноводные линзы


 

А также другие работы, которые могут Вас заинтересовать

11029. Функции отдельных уровней модели OSI 26.5 KB
  Функции отдельных уровней модели OSI. Программный уровень Прикладной отвечает за пользовательский интерфейс в виде графической оболочки или командной строки. Пример Сетевое окружения окна ввода паролей и.т.д. Представительский отвечает за пре...
11030. Методы доступа. Примеры методов доступа 28 KB
  Методы доступа В большинстве сетевых технологий используется метод разделяемой среды передачи при котором множество узлов сети по очереди используют одну и ту же линию связи. Передавать данные при этом необходимо по очереди иначе пакеты от разных узлов смешаются и
11031. Управление ресурсами одноранговой сети 156.5 KB
  Практическая работа Управление ресурсами одноранговой сети Для работы необходимо наличие 2х виртуальных компьютеров под управлением Windows98 Windows2000 или Windows XP. Также необходимо присутствие дистрибутива Windows98. Целью работы является создание одноранговой сети ...
11032. Сетевые протоколы 559 KB
  Практическая работа Сетевые протоколы Для работы необходимо наличие неских виртуальных компьютеров под управлением Windows98 Windows2000 или Windows XP. Также необходимо присутствие дистрибутива Windows98. Целью работы является настройка сетевых протоколов на виртуальны...
11033. Сети с централизованным управлением (ЦУ) 330 KB
  Сети с централизованным управлением ЦУ Более сложная форма организации сети по сравнению с одноранговыми. Эта модель хорошо походит для крупных корпоративных сетей. Другое название сети – на основе выделенного сервера. Основные различия: ...
11034. Одноранговые сети 45 KB
  Одноранговые сети 1 занятие Любая сеть в конечном счете должна обеспечивать обмен полезными данными. В локальных сетях простейшим способом является использование сетевого окружения. Оно позволяет работать с общими сетевыми папками и принтерами. При этом некотор
11035. Одноранговые сети. Виды административного устройства сетей 319.5 KB
  Одноранговые сети. Целью изучения данной темы является организация общих сетевых ресурсов с помощью Сетевого окружения в различных ОС а также изучение систем прав доступа. Необходима работоспособное соединение компьютеров на базе протокола TCP/IP. Занятие 1 Люб...
11036. Enable Mapping to \\Hostname\C$ Share on Windows 7 or Vista 56.95 KB
  Enable Mapping to \HostnameC Share on Windows 7 or Vista Just about everybody knows about the hidden administrator C share that is always built into Windows file sharing but you might have wondered why you can’t use that in Windows 7 or Vista. The reason this doesn’t work is because of UAC User Account Control that Vista is infamous for. By default Vista doesn’t allow UAC elevation over the network with a local user account. There’s a registry key that we can use to c...
11037. Работа в сети с централизованным управлением 32.5 KB
  Практическая работа Работа в сети с централизованным управлением Цель работы. Освоить приемы работы рядового пользователя в существующей сети Microsoft при наличии домена безопасности. Исходная ситуация. Для работы используются виртуальные машины Win9x и Win2k изнача