18151

Классификация интегрально-оптических элементов и схем

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция 18. Классификация интегральнооптических элементов и схем Все интегральнооптические элементы ИОЭ разбиты на 3 класса: структурные элементы; интегральнооптические схемы первого уровня интеграции; интегральнооптические схемы второго уровня интег...

Русский

2013-07-06

1.23 MB

25 чел.

Лекция 18.

Классификация интегрально-оптических элементов и схем

Все интегрально-оптические элементы (ИОЭ) разбиты на 3 класса:

  1.  структурные элементы;
  2.  интегрально-оптические схемы первого уровня интеграции;
  3.  интегрально-оптические схемы второго уровня интеграции.

Структурные элементы – наиболее простые элементы ИОС. К этому классу относятся наиболее простые элементы, которые образуют элементарную волноводную конфигурацию. Перечень этих элементов следующий:

  1.  волноводы оптические:
  2.  полосковые;
  3.  планарные.
  4.  активные эпитаксиальные слои:
  5.  излучательные;
  6.  приемные.
  7.  волноводные переходы;
  8.  изгибы полосковые:
  9.  круглые;
  10.  параболические;
  11.  ступенчатые.
  12.  разветвление и пересечение полосковое:
  13.  Y – разветвление;
  14.  – разветвление;
  15.  Т – разветвление;
  16.  Х – пересечение.
  17.  связанные волноводы (можно передавать энергию от одного к другому):
  18.  полосковый и полосковый;
  19.  полосковый и планарный.
  20.  линзы волноводные:
  21.  линза Люнеберга;
  22.  геодезическая линза.
  23.  дифракционные решетки;
  24.  фоточувствительные волноводные слои;
  25.  буферные слои;
  26.  призмы волноводные.

С помощью этих элементов обеспечивают:

  1.  ввод излучения в схему и вывод с помощью волноводных переходов, дифракционных решеток, фоточувствительных слоев, планарных линз;
  2.  связь волновода различной ширины, глубины и высоты друг с другом (волноводные переходы);
  3.  деление мощности на два и более каналов (различные разветвления);
  4.  ответвление мод излучения из одного канала в другой (связанные оптические волноводы).

Для удобства основные структурные элементы сведены в таблицу, которая показана на рис 18.1.

Рис.18.1. Основные структурные элементы

 

Основными структурными элементами любой интегральной схемы являются волноводы. Их изготавливают из стекла, плавленого кварца, керамики.

Известны следующие варианты изготовления оптических волноводов:

  1.  полосковые:
  2.  гребенчатый;
  3.  утопленный;
  4.  погруженный.
  5.  планарные:
  6.  выступающие;
  7.  погруженные;
  8.  утопленные.

Варианты изготовления гребенчатых волноводов следующие:

  1.  распыление:
  2.  высокочастотное;
  3.  реактивное;
  4.  электронно-лучевое;
  5.  термическое.
  6.  полимеризация:
  7.  плазменная;
  8.  высокочастотная;
  9.  электронно-лучевая;
  10.  фотополимеризация;
  11.  термическая.
  12.  эпитаксия:
  13.  жидкофазная;
  14.  парофазная;
  15.  металлоорганическое осаждение;
  16.  молекулярно-лучевая.

Варианты изготовления погруженных и утопленных волноводов следующие:

  1.  диффузия;
  2.  имплантация ионов;
  3.  облучение.

Основные характеристики волноводов из ниобата лития приведены в табл.18.1.

Таблица 18.1.

Способ

Ионы оксида

Δn

α дБ/см, λ=0,63 мкм

Ионный обмен

Ag+, Te+

0.03, 0.12

0.7…1.3

Диффузия обратная

Li2O

0.003

0.1…0.3

Диффузия прямая

Ti+

0.03

0.3…1.0

Технологические приемы изготовления волноводов показаны на рис.18.2.

Рис.18.2. Технологические приемы изготовления волноводов

Изгибы полосовых волноводов

На рисунке 18.3 показан S-образный изгиб волновода с двумя секциями.

Рис. 18.3. S – образный изгиб волновода

Одним из важнейших параметров в волноводах являются потери. Если радиус изгиба определяется из неравенства:

    (18.1)

где

- расстояние вдоль подложки, при котором амплитуда волны падает в (е) раз,  то потери будут незначительными.

Связь волноводов осуществляется благодаря перекрытию электромагнитных полей в зоне изгиба и определяется соотношением:

        (18.2)

где  

, – значения показателей преломления волновода в зоне изгиба

Волноводные разветвления

Разветвление и пересечение полосковых волноводов используется для деления световой мощности, фильтрации и преобразования мод.

Y – разветвления могут быть симметричными и несимметричными. При больших углах и , и при неравенстве этих углов оптическая мощность делится несимметрично. При малых углах и при разных значениях ширины полосковых волноводов всегда находятся углы и , при которых мощности будут равны.

Разветвитель Т – типа позволит разделить мощности в соотношениях:   0,75:1;   1:1;   1:0,75.

Рис. 18.4. Волноводные разветвления и пересечения.

Х – пересечение может быть использовано в качестве переключающего канала с использованием эффекта Покельса и явления ПВО.

Связанные волноводы

Волноводы такого типа показаны на рисунке 18.5.

Рис. 18.5. Связанные полосковые волноводы.

Волноводные линзы

К волноводным линзам относят:

  1.  линзу Люнеберга;
  2.  геодезическую линзу.

Линза Люнеберга – это часть сферы на поверхности световода. Недостаток такой линзы определяется трудностью подбора материала с показателем преломления больше чем у волновода.

Параметры линзы Люнеберга:

 

Геодезическая линза представляет собой углубление или возвышение над поверхностью подложки, поэтому ее свойства не зависят от показателя преломления. Если углубление напыляется зеркальным покрытием, тогда у линзы отсутствует хроматизм.

Параметры геодезической линзы:

Дифракционные решетки

Дифракционные решетки применяются для двух целей:

  1.  для ввода излучения в волновод;
  2.  для образования резонатора на поверхности волновода.

На рисунке 18.6 показаны дифракционные решетки.

Рис. 18.6. Дифракционные решетки

Применяются два типа резонаторов на базе дифракционных решеток, которые показаны на рисунке 18.7:

  1.  резонатор с распределенным Брэгговским отражением (РБО);
  2.  резонатор с распределенной обратной связью (РОС).

Рис. 18.7. Резонаторы на базе дифракционных решеток

Дифракционные волноводные линзы

Дифракционные волноводные линзы могут располагаться в параллельных пучках и в наклонных пучках.

В параллельных пучках используют линзы следующего типа:

  1.  Френелевская дифракционная линза;
  2.  Брегговская дифракционная линза.

В наклонных пучках используются линзы следующего типа:

  1.  прямые с переменным шагом;
  2.  искривленные с переменным шагом.

На рисунке 18.8 показаны дифракционные волноводные линзы приведенных выше типов.

Рис. 18.8. Дифракционные волноводные линзы


 

А также другие работы, которые могут Вас заинтересовать

20065. Изготовление пробных стекол. Изготовление шкал и сеток 393 KB
  Для получения точных плоских поверхностей принимают одно стекло например 1 на рис.31 б в Рис. При наложении стекол 2 и 3 друг на друга общий €œбугор€ составит 2 полосы рис 4. Эллиптические зеркала большого диаметра изготавливают за несколько переходов с промежуточным отжигом из тонкого латунного листа 1 выдавливанием на токарном станке с помощью приспособления 2 имеющего выпуклую форму с наружной асферической поверхностью рис.
20066. Способы формообразования сферических и плоских поверхностей. Шлифование стекла свободным абразивом. Полирование стекла 39 KB
  Шлифование стекла свободным абразивом. Шлифование используется для придания необходимых форм размеров и образования поверхностей с тонкой структурой. Для формообразования поверхности с постепенным снижением шероховатости производят последовательно грубое среднее и тонкое шлифование. Грубое шлифование плоских поверхностей выполняют алмазными кругами на спец фрезерных или плоскошлифовальных станках.
20067. Влияние основных технологических факторов на процессы шлифования и полирования стекла. Обработка деталей на станках с жестко устанавливаемым инструментом. Способ свободной притирки 28.5 KB
  Обработка деталей на станках с жестко устанавливаемым инструментом. Обработка деталей на станках с жестко устанавливаемым инструментом. Для обработки оптических деталей способом свободного притира используются шлифовальнополировальные станки.
20068. Инструмент и приспособления для механического креплением заготовок. Блокировка оптических деталей 77.5 KB
  Приспособления с механическим креплением заготовок применяют на операциях обработки граней призм кругления дисков и т. Приспособления для обработки 3х граней призм плоскошлифовальном станкерис. Грани призм обрабатывают последовательно устанавливая приспособление на столе ст. Гипсованиерис крепят призмы с невысокими требованиями точности изготовления углов 3 а также пластины.
20069. Классификация и технологичность конструкции. Заготовки и способы закрепления. Основные варианты изготовления осей и валов. Обработка многоступенчатых валов на многорезцовых токарных полуавтоматах 158.5 KB
  Основные варианты изготовления осей и валов. Обработка многоступенчатых валов на многорезцовых токарных полуавтоматах. При изготовлении валов исходные заготовки получают либо путем пластической деформации либо путем резки сортового или калиброванного проката.95 для единичного и мелкосерийного при изготовлении валов с небольшим перепадом диаметров используют горячекатаный нормальный прокат который разрезают на штучные заготовки.
20070. Структурные схемы приборов. Схема с последовательным соединением звеньев. Чувствительность. Погрешность 253.5 KB
  Структурной схемой называют схему содержащую предельно упрощенное обозначение функциональных узлов прибора или устройства а также логические связи этих узлов друг с другом. При эксплуатации прибора на его вход воздействует информативный параметр х измеряемая величина а также неинформативные параметры g1 g2 gn. При прохождении сигнала по компонентам прибора на подсистемы подузлы прибора воздействуют внутренние дестабилизирующие факторы q1 q2 qm которые так или иначе влияют на работоспособность этих узлов а следовательно и на...
20071. Дифференциальная схема соединения звеньев 55 KB
  Дифференциальной называется схема содержащая два канала с последовательным соединением преобразователей причем выходные величины каждого из каналов подаются на два входа вычитающего преобразователя. Вычитающий преобразователь это преобразователь с двумя входами выходная величина которого: у=у1у2 Оба канала дифференциальной схемы одинаковы и находятся в одинаковых условиях. В схеме первого типа измеряемая величина воздействует на вход одного канала а на вход другого канала подается величина той же физ. В схеме второго типа измеряемая...
20072. Схемы включения резистивных преобразователей. 86 KB
  I=E RxRИПRлсRE При изменении сопротивления резистивного преобразователя Rx изменяется ток Iр в цепи и следовательно показания прибора ИП. достоинства: простота Делитель напряжения E= IR1 Rx UХ= I Rx= E Rx Rx R1 Потенциометрическая схема включения резистивных преобразователей напряжение от источника питания E подается на крайние выходы резистивного преобразователя Rx. При этом напряжение нагрузки пропорционально перемещению движка при линейной функции...
20073. Мостовая схема включения резистивных преобразователей. Балансировка 79.5 KB
  Ветви с сопротивлениями R1 R2 R3 и R4 называются плечами моста. Ветви включающие измерительный прибор и источник питания называются диагоналями моста. Резистивные преобразователи могут включаться в 1 2 или все четыре плеча моста режим х. то выходное напряжение моста: ; где Uпит = Е напряжение питания.