18277

ВІДНОШЕННЯ МІЖ ЕЛЕМЕНТАМИ ДВОХ МНОЖИН

Лекция

Математика и математический анализ

Лекція 4 ВІДНОШЕННЯ МІЖ ЕЛЕМЕНТАМИ ДВОХ МНОЖИН Відношення між елементами двох множин та його основні характеристики: області відправлення і прибуття; графи відношення області визначення і значення повні образи і прообрази елементів. Операції над відношення...

Украинкский

2013-07-07

53 KB

25 чел.

Лекція 4

ВІДНОШЕННЯ МІЖ ЕЛЕМЕНТАМИ ДВОХ МНОЖИН

  1.  Відношення між елементами двох множин та його основні характеристики: області відправлення і прибуття; графи відношення, області визначення і значення, повні образи і прообрази елементів.
  2.  Операції над відношеннями. Відношення протилежне і обернене даному.
  3.  Поняття про граф. Граф відношення.
  4.  Точковий графік відношення між елементами двох числових множин.
  5.  Способи задання відношень.

  1.  Відношення між елементами двох множин та його основні характеристики: області відправлення і прибуття; графи відношення, області визначення і значення, повні образи і прообрази елементів.

Усі арифметичні операції, операції над множинами є, по суті, відношеннями між елементами однієї чи кількох множин.

Довільна підмножина декартового добутку множин A і B називається відношенням між елементами множин A і B. При цьому множина A називається областю (множиною) відправлення відношення, множина Bобластю (множиною) прибуття відношення. Множина впорядкованих пар, що складають відношення, називається його графіком.

Відношення між елементами двох множин у більшості випадків позначають малими грецькими або ж латинськими буквами ρ, φ, ψ, ..., f, g, h,... . Самі ці букви несуть подвійне навантаження: вони позначають відношення між елементами двох множин, а також і його графік. Те, що ρ є відношенням між елементами множин A і B, записується

ρ Ì A × B.

Іноді замість терміну "відношення між елементами множин A і B" користуються терміном "відповідність між елементами множин A і B". Якщо пара (xy) належить відношенню ρ між елементами множин A і B, тобто (xyΠρ, то у теорії відношень говорять, що елемент x перебуває у відношенні ρ з елементом y або, що елементу x при відношенні ρ ставиться у відповідність елемент y і, крім запису (xyΠρ, користуються ще й таким записом x ρ y. Якщо задано відношення ρ Ì A × B, то:

1) Повним образом будь-якого елемента з області відправлення відношення називається множина елементів області прибуття відношення, з якими він перебуває у заданому відношенні. Повний образ елемента x Î A позначається ρ(x):

ρ(x):= {y Î B | x ρ y, ρ Ì A × B}.

Кожний елемент з множини ρ(x) називається образом елемента x.

2) Повним прообразом будь-якого елемента з області прибуття відношення називається множина елементів області відправлення, які перебувають з ним у відношенні.

Повний прообраз елемента y Î B позначається ρ-1 (y).

ρ-1(y):= {x Î A | x ρ y, ρ Ì A × B}

Кожний елемент з множини ρ-1(y) називається прообразом елемента y.

3) Множина всіх перших компонент графіка відношення р називається його областю визначення і позначається D(ρ). Означення можна сформулювати і так: множина тих елементів x із області відправлення відношення ρ, для яких їх повні образи є непорожніми множинами, називається областю визначення відношення ρ.

4) Множина всіх других компонент графіка відношення ρ називається його областю значення і позначається Е(ρ). Означення можна сформулювати і так: множина тих y із області прибуття відношення ρ, для яких їх повні прообрази є непорожніми множинами, називається областю значення відношення ρ. Очевидно, що

D(ρÌ A   і   Е(ρÌ B.

5) Відношення називається всюди визначеним, якщо його область визначення збігається з областю відправлення.

6) Відношення називається cюр'єктивним, якщо його область значення збігається з областю прибуття.

Відношення ρ і φ між елементами множини A і B називаються рівними, якщо їх графіки збігаються, що записується ρ = φ.

  1.  Операції над відношеннями.

Відношення протилежне і обернене даному.

Над відношеннями, визначеними між елементами множин A і B, як над множинами, можна виконувати всі теоретико-множинні операції та одержувати нові відношення між елементами цих множин. Зокрема, різниця між декартовим добутком множин A і B та відношенням ρ Ì A × B називається протилежним відношенням до відношення ρ і позначається . Отже,

:= {(xy ΠA × B | (xyÏ ρ Ì A × B}.

Оберненим відношенням до відношення ρ Ì A × B називається відношення, визначене між елементами множин B і A, графік якого складається з усіх пар (yx) таких, що (xyΠρ. Обернене відношення до відношення ρ позначається ρ-1. Очевидно, що

D(ρ-1) = E(ρ),     Е(ρ-1) = D(ρ),    (ρ-1)-1 = ρ.

Граф оберненого відношення одержується із графа даного відношення зміною напряму на всіх його дугах на протилежний. Точкові графіки даного і оберненого йому відношень між елементами двох числових множин симетричні відносно бісектриси першого і третього координатних кутів.

Композицією відношень ρ Ì A × B і j Ì B × C називається відношення між елементами множин A і C, яке складається з тих і тільки тих пар (xzΠA × C, для яких існує елемент y множини B такий, що (xyΠρ і (yzΠφ. Композиція відношень ρ і j позначається ρ * j.

  1.  Поняття про граф. Граф відношення.

Для наочного зображення відношення часто користуються графами, а у випадку числових множин ще й точковими графіками. Графом називається множина точок і відрізків, які попарно з'єднують деякі з цих точок. Точки називаються вершинами графа, а відрізки – його ребрами.

Граф, на ребрах якого вказано напрям, називається орієнтованим, а ребра – дугами. Ми розглядатимемо лише орієнтовані графи і називатимемо їх просто графами.

  1.  Точковий графік відношення між елементами

двох числових множин.

Якщо задано відношення ρ Ì A × B і множини A та B є числовими, то як і у випадку декартового добутку, розглядають координатну площину і по осі Ox відмічають елементи множини A, а по осі Oy – елементи множини B, через кожну з одержаних точок проводять прямі, перпендикулярні до координатних осей, і серед точок, які одержуються у результаті перетину цих прямих, вибирають ті, координати яких рівні парам відношення. Вибрані точки і складають точковий графік відношення.

  1.  Способи задання відношень.

Існують різні способи задання відношення:

графіком, тобто множиною пар,

різними видами таблиць,

графом,

точковим графіком, якщо множини числові,

характеристичною властивістю пар, що належать графіку відношення.

Взагалі кажучи, способами 1), 2) і 3) зручно користуватися тоді, коли графік відношення є скінченною множиною.

Над відношеннями, визначеними між елементами множин A і B, як над множинами, можна виконувати всі теоретико-множинні операції та одержувати нові відношення між елементами цих множин. Зокрема, різниця між декартовим добутком множин A і B та відношенням ρ Ì A × B називається протилежним відношенням до відношення ρ і позначається . Отже,

:= {(xy ΠA × B | (xyÏ ρ Ì A × B}.


 

А также другие работы, которые могут Вас заинтересовать

3042. Будівельне матеріалознавство 2.45 MB
  Будівництво є частиною матеріальної культури суспільства, за ним можна судити про прогрес науки і техніки, особливості побуту, національні традиції. Людина почала будувати перші житла ще в епоху неоліту (3 тис. років до н.е.), використовуючи природні матеріали: камені, шматки дерева, глину.
3043. Расчет строительства многоквартирных домов города Новосибирск 144.5 KB
  Задачи, решаемые государством по ускорению социально-экономического развития страны всегда были неразрывно связаны с совершенствованием строительства и строительной техники. Создание первых отечественных государственных строительных организ...
3044. Правовая охрана программ для электронно-вычислительных машин и баз данных 115 KB
  В связи с переходом Российской Федерации к рыночным отношениям система законодательства претерпела кардинальные изменения. Это относится и к правовым нормам, регулирующим отношения, возникающие в связи с созданием и использованием продуктов...
3045. Процесс обучения и использование технических средств при получении знаний учащихся 382.5 KB
  Изменения, происходящие в России, приводят к тому, что у человека появляется больше «степеней свободы», его успешность в жизни менее детерминирована внешними обстоятельствами. В связи с этим все более востребованными становятся умения анали...
3046. Художественная обработка металлов на уроках технологии в 6 классе 588.93 KB
  Глубокие перемены, происходящие в современном образовании, выдвигают в качестве приоритетных проблемы  расширения содержания  и использования новых технологий обучения и воспитания. Совершенствование технологической среды, внедрен...
3047. ФИЗИОЛОГИЯ СОСУДИСТОЙ СИСТЕМЫ. ОСНОВНЫЕ ПРИНЦИПЫ ГЕМОДИНАМИКИ 70.05 KB
  Функциональная классификация кровеносных и лимфатических сосудов (структурно-функциональная характеристика сосудистой системы). Основные законы гемодинамики. Кровяное давление, его виды (систолическое, диастолическое, пульсовое, среднее, центральное и периферическое, артериальное и венозное). Факторы, определяющие кровяное давление.
3048. Проект управління земельними ресурсами м. Черкаси за розподілом земель житлової забудови 4.33 MB
  Вступ Розділ 1. Теоретичні засади щодо використання земель житлової та громадської забудови. 1.1. Обґрунтування поділу земель міста за функціональним призначенням. 1.2. Огляд спеціалізованої літератури. 1.3. Аналіз наявності законодавчої бази....
3049. Правове регулювання права власності на землю в Україні 615 KB
  Вступ Існування людини забезпечується головним чином завдяки суспільному виробництву, в процесі якого створюються необхідні для неї матеріальні блага (за винятком благ, безпосередньо створених природою). Звичайно ж функціонування такого виробництва ...
3050. Основы акушерской и гинекологической помощи 1.15 MB
  ЛЕКЦИЯ Организация акушерской и гинекологической помощи в России Материнская смертность (является ведущим показателем)  рассчитывается на 100 000 живорожденных В 1992 г. в России  она составила 56-60, в Ставропольском крае – ...