18277

ВІДНОШЕННЯ МІЖ ЕЛЕМЕНТАМИ ДВОХ МНОЖИН

Лекция

Математика и математический анализ

Лекція 4 ВІДНОШЕННЯ МІЖ ЕЛЕМЕНТАМИ ДВОХ МНОЖИН Відношення між елементами двох множин та його основні характеристики: області відправлення і прибуття; графи відношення області визначення і значення повні образи і прообрази елементів. Операції над відношення...

Украинкский

2013-07-07

53 KB

25 чел.

Лекція 4

ВІДНОШЕННЯ МІЖ ЕЛЕМЕНТАМИ ДВОХ МНОЖИН

  1.  Відношення між елементами двох множин та його основні характеристики: області відправлення і прибуття; графи відношення, області визначення і значення, повні образи і прообрази елементів.
  2.  Операції над відношеннями. Відношення протилежне і обернене даному.
  3.  Поняття про граф. Граф відношення.
  4.  Точковий графік відношення між елементами двох числових множин.
  5.  Способи задання відношень.

  1.  Відношення між елементами двох множин та його основні характеристики: області відправлення і прибуття; графи відношення, області визначення і значення, повні образи і прообрази елементів.

Усі арифметичні операції, операції над множинами є, по суті, відношеннями між елементами однієї чи кількох множин.

Довільна підмножина декартового добутку множин A і B називається відношенням між елементами множин A і B. При цьому множина A називається областю (множиною) відправлення відношення, множина Bобластю (множиною) прибуття відношення. Множина впорядкованих пар, що складають відношення, називається його графіком.

Відношення між елементами двох множин у більшості випадків позначають малими грецькими або ж латинськими буквами ρ, φ, ψ, ..., f, g, h,... . Самі ці букви несуть подвійне навантаження: вони позначають відношення між елементами двох множин, а також і його графік. Те, що ρ є відношенням між елементами множин A і B, записується

ρ Ì A × B.

Іноді замість терміну "відношення між елементами множин A і B" користуються терміном "відповідність між елементами множин A і B". Якщо пара (xy) належить відношенню ρ між елементами множин A і B, тобто (xyΠρ, то у теорії відношень говорять, що елемент x перебуває у відношенні ρ з елементом y або, що елементу x при відношенні ρ ставиться у відповідність елемент y і, крім запису (xyΠρ, користуються ще й таким записом x ρ y. Якщо задано відношення ρ Ì A × B, то:

1) Повним образом будь-якого елемента з області відправлення відношення називається множина елементів області прибуття відношення, з якими він перебуває у заданому відношенні. Повний образ елемента x Î A позначається ρ(x):

ρ(x):= {y Î B | x ρ y, ρ Ì A × B}.

Кожний елемент з множини ρ(x) називається образом елемента x.

2) Повним прообразом будь-якого елемента з області прибуття відношення називається множина елементів області відправлення, які перебувають з ним у відношенні.

Повний прообраз елемента y Î B позначається ρ-1 (y).

ρ-1(y):= {x Î A | x ρ y, ρ Ì A × B}

Кожний елемент з множини ρ-1(y) називається прообразом елемента y.

3) Множина всіх перших компонент графіка відношення р називається його областю визначення і позначається D(ρ). Означення можна сформулювати і так: множина тих елементів x із області відправлення відношення ρ, для яких їх повні образи є непорожніми множинами, називається областю визначення відношення ρ.

4) Множина всіх других компонент графіка відношення ρ називається його областю значення і позначається Е(ρ). Означення можна сформулювати і так: множина тих y із області прибуття відношення ρ, для яких їх повні прообрази є непорожніми множинами, називається областю значення відношення ρ. Очевидно, що

D(ρÌ A   і   Е(ρÌ B.

5) Відношення називається всюди визначеним, якщо його область визначення збігається з областю відправлення.

6) Відношення називається cюр'єктивним, якщо його область значення збігається з областю прибуття.

Відношення ρ і φ між елементами множини A і B називаються рівними, якщо їх графіки збігаються, що записується ρ = φ.

  1.  Операції над відношеннями.

Відношення протилежне і обернене даному.

Над відношеннями, визначеними між елементами множин A і B, як над множинами, можна виконувати всі теоретико-множинні операції та одержувати нові відношення між елементами цих множин. Зокрема, різниця між декартовим добутком множин A і B та відношенням ρ Ì A × B називається протилежним відношенням до відношення ρ і позначається . Отже,

:= {(xy ΠA × B | (xyÏ ρ Ì A × B}.

Оберненим відношенням до відношення ρ Ì A × B називається відношення, визначене між елементами множин B і A, графік якого складається з усіх пар (yx) таких, що (xyΠρ. Обернене відношення до відношення ρ позначається ρ-1. Очевидно, що

D(ρ-1) = E(ρ),     Е(ρ-1) = D(ρ),    (ρ-1)-1 = ρ.

Граф оберненого відношення одержується із графа даного відношення зміною напряму на всіх його дугах на протилежний. Точкові графіки даного і оберненого йому відношень між елементами двох числових множин симетричні відносно бісектриси першого і третього координатних кутів.

Композицією відношень ρ Ì A × B і j Ì B × C називається відношення між елементами множин A і C, яке складається з тих і тільки тих пар (xzΠA × C, для яких існує елемент y множини B такий, що (xyΠρ і (yzΠφ. Композиція відношень ρ і j позначається ρ * j.

  1.  Поняття про граф. Граф відношення.

Для наочного зображення відношення часто користуються графами, а у випадку числових множин ще й точковими графіками. Графом називається множина точок і відрізків, які попарно з'єднують деякі з цих точок. Точки називаються вершинами графа, а відрізки – його ребрами.

Граф, на ребрах якого вказано напрям, називається орієнтованим, а ребра – дугами. Ми розглядатимемо лише орієнтовані графи і називатимемо їх просто графами.

  1.  Точковий графік відношення між елементами

двох числових множин.

Якщо задано відношення ρ Ì A × B і множини A та B є числовими, то як і у випадку декартового добутку, розглядають координатну площину і по осі Ox відмічають елементи множини A, а по осі Oy – елементи множини B, через кожну з одержаних точок проводять прямі, перпендикулярні до координатних осей, і серед точок, які одержуються у результаті перетину цих прямих, вибирають ті, координати яких рівні парам відношення. Вибрані точки і складають точковий графік відношення.

  1.  Способи задання відношень.

Існують різні способи задання відношення:

графіком, тобто множиною пар,

різними видами таблиць,

графом,

точковим графіком, якщо множини числові,

характеристичною властивістю пар, що належать графіку відношення.

Взагалі кажучи, способами 1), 2) і 3) зручно користуватися тоді, коли графік відношення є скінченною множиною.

Над відношеннями, визначеними між елементами множин A і B, як над множинами, можна виконувати всі теоретико-множинні операції та одержувати нові відношення між елементами цих множин. Зокрема, різниця між декартовим добутком множин A і B та відношенням ρ Ì A × B називається протилежним відношенням до відношення ρ і позначається . Отже,

:= {(xy ΠA × B | (xyÏ ρ Ì A × B}.


 

А также другие работы, которые могут Вас заинтересовать

45515. Методы прямого доступа 22 KB
  Основа метода – хеширование – вычисление адреса хранимой информации на основе некоторых ключей, т.е. части информации, которая нас интересует. Примером является телефонный справочник, где хеширование идет по буквам алфавита
45516. ER-модель (модель Чена) 120.5 KB
  16 вариантов Предметная область – преподаватель читает некоторые лекции. Существует ПО такая что один преподаватель читает не больше одной дисциплины каждая дисциплина читается не больше чем одним преподавателем. ERдиаграмма экземпляров преподаватель предмет 1 1 2 2 3...
45517. Правила Джексона для перехода от модели Чена к реляционной модели 46.5 KB
  Растут деревья на участках леса: Дерево Участок Площадь Сосна Бор 1 Береза Роща 2 Осина Лиственный лес 3 Если 1о:1н то для представления информации необходимо 2 таблицы отдельная таблица для необязательного класса принадлежности. Тогда 1 таблица описывает участки 2 таблица описывает породы деревьев 3 таблица является связующей она содержит информацию о том на каком участке какое дерево растет. Первая таблица описывает первый объект вторая таблица описывает второй объект а третья таблица описывает связь. Если nобъектных...
45518. Примеры бинарных связей 52 KB
  Отношение эквивалентности Определение 8. Отношение на множестве называется отношением эквивалентности если оно обладает следующими свойствами: для всех рефлексивность Если то симметричность Если и то транзитивность Обычно отношение эквивалентности обозначают знаком или и говорят что оно отношение задано на множестве а не на . Условия 13 в таких обозначениях выглядят более естественно: для всех рефлексивность Если то симметричность Если и то транзитивность Легко доказывается что если на множестве задано...
45520. Архитектуры БД 37.5 KB
  По этой причине при построении информационной системы приходится решать задачу согласованного управления распределенной базой данных иногда применяя методы репликации данных. При однородном построении распределенной базы данных на основе однотипных серверов баз данных эту задачу обычно удается решить на уровне СУБД большинство производителей развитых СУБД поддерживает средства управления распределенными базами данных. для управления отдельными частями распределенной базы данных используются разные серверы то приходится прибегать к...
45521. Проектирование базы данных с помощью нормализации 49.5 KB
  Таблица находится в первой нормальной форме 1Н. Таблица находится во второй нормальной форме 2Н. Таблица находится в третьей нормальной форме 3Н. Таблица находится в нормальной форме БойсаКодда Н.
45522. Операция «соединение» и ее свойства 34 KB
  Внутренняя а естественное соединение осуществляется по равенству значений в одноименных столбцах. rBC sBD = qBCD 11 112 11b 112b 123 42c 113 113b 421c операция соединения для таблиц с одинаковыми схемами равносильна операции пересечения: rB sB = qB 11...
45523. Разложение без потерь. Теорема. Примеры 29.5 KB
  Договоримся, что малыми латинскими буквами мы будем обозначать таблицы, большими латинскими буквами – атрибуты и множества атрибутов. Например, r(R) – это таблица r со множеством атрибутов R