18300

РІВНЯННЯ. Лінійні рівняння з однією зміною та їх розв’язування

Лекция

Математика и математический анализ

Лекція 27 РІВНЯННЯ Рівняння з однією зміною як предикат та його основні характеристики. Рівносильні рівняння. Теореми про рівносильність рівнянь та наслідки з них. Лінійні рівняння з однією зміною та їх розв’язування з аналізом використаної при цьому теор

Украинкский

2013-07-07

80 KB

28 чел.

Лекція 27

РІВНЯННЯ

  1.  Рівняння з однією зміною як предикат та його основні характеристики.
  2.  Рівносильні рівняння. Теореми про рівносильність рівнянь та наслідки з них.
  3.  Лінійні рівняння з однією зміною та їх розв’язування (з аналізом використаної при цьому теорії).

  1.  Рівняння з однією зміною як предикат

та його основні характеристики

Нехай на множині М задано два вирази f(x) і q(x) з однією змінною х. Предикат виду f(x) =  q(x), х М,  для якого потрібно знайти область істинності, називається рівнянням з однією змінною. Вирази f(x) і q(x) називаються частинами рівняння, f(x) лівою,  q(x) правою. У випадку, коли хоч одна із частин рівняння є алгебраїчною сумою, то доданки суми називаються членами рівняння. Множина М називається областю визначення рівняння.

Згідно з означенням, рівняння з однією змінною є предикатом, а тому до нього можна застосувати всі ті поняття, які використовуються для характеристики предиката. Множина істинності предиката, що задає рівняння, називається множиною розв’язків рівняння (множиною коренів рівняння), а кожне число, яке належить цій множині, називається розв’язком (коренем) даного рівняння. Розв’язати дане рівняння – значить знайти множину його розв’язків.

Часто область визначення рівняння не вказується, в цьому випадку її потрібно встановити: вона є перерізом областей визначення кожного з виразів f(x) і q(x) рівняння (кожної з частин рівняння). В залежності від області визначення рівняння може мати різні множини розвязків. Наприклад, рівняння

(х – 1) (х + 2) (х2 3)(х2 + 1) = 0

на множині натуральних чисел має один розв’язок, бо тільки при х = 1 добуток множників дорівнює нулю, на множині цілих чисел – два розв’язки { – 2; 1} , а на множині дійсних чисел – чотири розв'язки { – 2;; 1, }.

Прийнято також не вказувати область визначення рівняння в тих випадках, коли вона рівна найширшій числовій множині, яка відома тому, хто його розвязує. Зокрема, по мірі ознайомлення учнів з числовими множнами, такою множиною для молодших школярів є множина цілих невідємних чисел, а для учнів середньої школи – множина дійсних чисел.

  1.  Рівносильні рівняння.

Теореми про рівносильність рівнянь та наслідки з них

Два рівняння з однією змінною, визначені на множині М, називаються рівносильними на ній, якщо їх множини розв’язків збігаються. Два рівняння, визначені на множині М, є рівносильними на ній і тоді, коли на цій множині вони розв’язків не мають.

З означення випливає, що рівносильність рівнянь істотно залежить від їх області визначення: зміна її може привести до порушення рівносильності. Наприклад, рівняння

(х – 1)(х + 3) = 0   і (х – 1)(х + 2) = 0

рівносильні на множині натуральних чисел, бо вони мають на ній своїм розв’язком лише число 1, і нерівносильні на множні цілих чисел, бо на ній, крім одиниці, перше рівняння має розвязком число – 3, а друге – число –2.

Відношення рівносильності рівнянь є відношенням еквівалентності і задає на множинні рівнянь розбиття на класи рівносильних між собою рівнянь. Це дає змогу при розв’язуванні рівнянь заміняти їх на рівносильні, розв’язки яких легше знайти.

В процесі розвязування над рівняннями здійснюються різні перетворення. Однак не всі з них приводять до одержання рівносильних рівнянь. Наприклад, заміна рівняння

        (х – 1)(х – 3) = х – 3                                        (1)

рівнянням

       х – 1 = 1                                                        (2)

неправильна, бо рівняння нерівносильні на множині дійсних чисел. Справді, рівняння (1) має множину розв’язків {2, 3}, а (2) – { 2 }. Рівняння (2) одержане з рівняння (1) діленням обох частин на вираз х – 3 , який дорівнює нулю при х = 3 і при цьому втратили розв'язок х = 3 першого рівняння.

Якщо ж рівняння

                                        х – 1 = 2                                                   (3)

замінити рівнянням

                                                   (х – 1)2 = 4,                                                (4)

то також одержиться нерівносильне йому рівняння, бо рівняння (3) має множину розв’язків { 3 } , а рівняння (4) – { – 1; З }, Отже, множини розв’язків не рівні, а тому, за означенням, рівняння нерівносильні на множині дійсних чисел. Розвязок х = – 1 буде стороннім для рівняння (3). З точки зору математичної логіки рівняння (4) є лише логічним наслідком рівняная (3).

Користуючись поняттями математичної логіки можна дати означення рівносильності рівнянь з однією змінною по-іншому.

Два рівняння з однією змінною, визначені на множині М, називаються рівносильними на ній, якщо кожне з них є логічним наслідком іншого.

Широке використання перетворень, що їх доводиться виконувати при розвязуванні рівнянь, базуються на застосуванні таких двох теорем.

Теорема 1. Якщо до обох частин рівняння з однією змінною, визначеного на множині М, додати вираз, визначений на цій же множині, то одержиться рівняння, рівносильне заданому на множині М.

►   Нехай

           f(x) = q(x),    xМ,                                           (1)

дане рівняння і ϕ(х), х М,  вираз, який додаємо до обох частин рівняння (1). Тоді

         f(x) + ϕ(х) = q(x) +ϕ(х),                            (2) 

є одержаним рівнянням.

Нехай х0  довільний розвязок рівняння (1). Підставивши х0 в рівняння (1), одержимо істинну числову рівність

             f(x0) = q(x0).                                               (3)

До обох частин істинної числової рівності (3) додамо числовий вираз  ϕ(х0) і одержимо істинну числову рівність, на основі властивості 1 § 23 п.2,

f(x0) + ϕ(х0) = q(x0) +ϕ(х0),

яка означає, що х0 є розв'язком рівняння (2).

Отже, довільний розв’язок рівняння (1) є розв’язком рівняння (2), тобто рівняння (2) є логічним наслідком рівняння (1).

Нехай тепер .х0 – довільний розвязок рівняння (2), тоді

             f(x0) + ϕ(х0) = q(x0) +ϕ(х0)                                (4)

є істинною числовою рівністю. Віднявши від обох частин рівності (4) числовий вираз ϕ(х0), одержимо істинну числову рівність, на основі властивості 1 § 23 п.2,

f(x0) = q(x0),

яка означає, що х0 є розвязком рівняння (1).

Значить, довільний розв’язок рівняння (2) є розв’язком рівняння (1),  тобто рівняння (1) є логічним наслідком рівняння (2).

Таким чином, кожне з рівнянь є логічним наслідком іншого, що й доводить їх рівносильність.   ◄

Наслідок 1. До обох частин рівняння з однією змінною можна додати (відняти) одне і те ж число, і одержиться рівняння рівносильне  даному.

Наслідок 2. Члени рівняння з однією змінною можна переносити з однієї частини рівняння в іншу з протилежним знаком, при цьому одержиться рівняння рівносильне даному.

Наслідок 3. При потребі всі члени рівняння з однією змінною можна перенести в одну з частин рівняння, а інша буде рівна нулю, і одержиться рівняння рівносильне даному.

Теорема 2. Якщо обидві частини рівняння з однією змінною, визначеного на множині М, помножити на вираз, визначений на цій же множині і відмінний від нуля, то одержиться рівняння, рівносильне даному на множині М .

Доведення теореми 2 аналогічне доведенню теореми 1, лише при цьому використовуються властивості 3 і 4 істинних числових рівностей § 23 п.2.

Наслідок 4. Обидві частини рівняння з однією змінною можна помножити (поділити) на одне і те ж число, яке відмінне від нуля, і при цьому одержиться рівняння  рівносильне даному.

Наслідок 5,  Рівняння    рівносильне рівнянню  f(x) = 0, х М.

Задача 3. Не розвязуючи рівнянь

x  4 = 3 і  х2 – 16 = 3(х + 4),

вказати, на яких множинах і на основі яких тверджень вони рівносильні.

►  Рівняння

x  4 = 3 і  х2 – 16 = 3(х + 4)

визначені на множині дійсних чисел R, тобто їх область визначення М = R. Якщо ліву частину х2 – 16 другого рівняння записати (х – 4)(х + 4), то воно набере вигляду

(х – 4)(х + 4) = 3(х + 4).

Тепер неважко встановити, що друге рівняння одержане з першого рівняння шляхом множення обох його частин на вираз х + 4, який не дорівнює нулю на множині М1 = ] - , -4 [∪] –4, + ∞[, а не на множині R . Тому за теоремою 2 про рівносильність рівнянь приходимо до висновку, що дані рівняння будуть рівносильними на множині

М1 = ] - , -4 [∪] –4, + ∞[ =R \ {  – 4 }

 і нерівносильними на множині дійсних чисел R.   ◄

При користуванні теоремами 1 і 2 та наслідками з них завжди потрібно пам’ятати, що рівняння рівносильні лише на області визначення вихідного рівняння. Одержане ж рівняння в більшості випадків має більш широку область визначення, значить може мати і більше розв’язків. Серед них розв’язками вихідного рівняння є тільки ті, що належать його області визначення.

Задача 4. Розвязати рівняння

4х – 1 +  = 19 – х + .

► Спочатку встановимо область визначення даного рівняння. Нею буде множина всіх дійсних чисел, за винятком числа 4, бо вираз  при х = 4 не має смислу. Отже, М = R \ { 4 }. На основі наслідку 3 з теореми 1 перенесемо всі члени даного рівняння в ліву частину, тоді матимемо

4х – 1 + 19 +  х   = 0.

Звівши подібні члени, дістанемо рівняння

  5х – 20 = 0       

областю визначення якого є вже множина дійсних чисел. Одержане рівняння має розвязок х = 4, який не є розв’язком даного рівняння, бо 4  М. Отже, дане рівняння розвязків не має. Поява стороннього розвязку для нього пояснюється тим, що внаслідок рівності нулю суми

 + ( –  )

область визначення одержаного рівняння розширилась і число 4 ввійшло в неї,

Відповідь: х  ∅.◀ 

Оскільки рівняння з однією змінною є предикатами, то над ними можна виконувати всі операції логіки висловлень, зокрема диз’юнкцію і кон’юнкцію.

Диз’юнкція рівнянь називається сукупністю рівнянь (позначається квадратною дужкою зліва), а кон’юнкція рівнянь – системою рівнянь (позначається фігурною дужкою зліва).

 Теорема 3. Рівняння   

f1(x)f2(x)∙… fп(x)=0, х М,

 рівносильне сукупності рівнянь

Доведення теореми 3 аналогічне доведенню теорем 1 і 2.

Існують різні методи розв’язування рівнянь. Одним із загальних методів розв’язування рівнянь є послідовна заміна їх на рівносильні за допомогою перетворень, що базуються на теоремах 1 і 2 та наслідках з них, поки не прийдуть до рівняння, розв’язки якого легко знайти. Крім того, до таких методів можна віднести зведення рівняння до сукупності рівнянь на основі теореми 3 або спрощення його на основі введення нових змінних. Наприклад, рівняння

(х + 3)(х – 5)(х – 8) = 0

можна розглядати як дизюнкцію рівнянь

(х + 3) = 0,  (х – 5) = 0, (х – 8) = 0,

розв’язки яких легко знайти:  – 3, 5, 8. Отже, множина розв’язків вихідного рівняння є об’єднанням множин розв’язків кожного з одержаних рівнянь, а саме { –3 , 5, 8}.

 


Задача 5.
Розв’язати рівняння

х44х3 + 8х + 46(х2 2х – 2) + 5 = 0.

 ► Дане рівняння можна записати так:

х44х3 + 4х2 4х2 + 8х + 46(х2 2х – 2) + 5 = 0 або

(х22х – 2)2 – 6(х2 2 х – 2) + 5 = 0 .

Поклавши  х2 2х – 2 = у, , одержимо рівняння

у26у + 5 = 0,

розвязками якого є у = 1, у = 5.

Підставивши ці розвязки замість у у співвідношення х2 2х – 2 = у, дістанемо рівняння

х2 2х – 2 = 1   і  х2 2х – 2 = 5,

з яких знаходимо розвязки даного рівняння:

х1 = 1,   х2 = 3,  х3 = 1 – 2,  х4 = 1 + 2.

Відповідь:   х   { - 1; 3; 1; 1 – 2, 1 + 2}.◄

  1.  Лінійні рівняння з однією зміною та їх розв’язування

(з аналізом використаної при цьому теорії)

Рівняння виду

  а1 х + b1 = а2 ∙х + b2,   а1, а2, b1, b2, х  R                         (1)

називається лінійним рівнянням з однією змінною. На основі наслідків теореми 1, перенесемо члени рівняння, що містять змінну, в ліву частину, а вільні члени (члени, що не містять змінної) – в  праву і зведемо подібні члени. Одержимо рівняння

                           ах = b,                                                 (2)

яке рівносильне рівнянню (1).

Якщо а ≠ 0, то рівняння (2) називається рівнянням першого степеня з однією змінною.

Можливі випадки:

1) а ≠ 0, тоді за наслідком 4 з теореми 2 рівняння (2) буде рівносильне рівнянню

х = .

В цьому випадку рівняння (2), а значить, і рівносильне йому рівняння (1), матиме один розвязок х   {}.

2) а = 0,  b = 0, тоді рівняння (2) набере вигляд

0 ∙ х = 0.

Будь-яке число буде його розвязком, бо добуток довільного числа і нуля дорівнює нулю. Отже, рівняння (2), а значить, і рівняння (1) своїми розв’язками матиме будь-яке дійсне число, тобто х R .

3) а = 0, b  0. тоді рівняння (2) набере вигляд

0 ∙ х = bn.

Воно не має розвязків, бо добуток  будь-якого числа та  нуля дорівнює нулю і ліва частина ні при якому значенні змінної не може дорівнювати правій. Отже, х ∈ ∅.

Задача 6. Розвязати рівняння

2х + 3 –5х – 4 = х + 3 + х – 7х.

► Перенесемо члени, що містять змінну, в ліву частину рівняння, а вільні члени – в праву частину і зведемо подібні члени:

2х – 5х – х – х + 7х = 3 – 3 + 4  2х = 4.

2 0, тоді, на основі наслідку 4 теореми 2, дістанемо, що х = 2.

Відповідь: х {2}.  ◄

Програма початкової школи передбачає лише ознайомлення з поняттям рівняння з однією змінною та розв’язування окремих із них способом підбору або на основі залежності між компонентами і результатами арифметичних операцій.

Задача 7. Розвязати рівняння

     14 – (5х + 10) : 3 = 4                                              (1)

на основі залежності між компонентами і результатами арифметичних операцій.

► 1. Із зазначених у лівій частині рівняння (1) операцій останньою є віднімання. Змінна міститься у невідомому відємнику, який одержиться, коли від зменшуваного відняти різницю: 14 – 4 = 10. Отже,

(5х + 10) : 3 = 10.                                     (2)

2. Останньою операцією у виразі лівої частини рівняння (2) є ділення. Змінна знаходиться в невідомому діленому, яке дорівнює добутку частки і дільника: 10 ∙ 3 = 3. Значить,

5х + 10 = 30.                                                (3)

3. Останньою операцією у виразі лівої частини рівняння (3) є додавання. Змінна міститься у невідомому доданку, який дорівнює різниці суми і відомого доданка: 30 – 10 = 20, а тому маємо

5х = 20.                                                           (4)

4. У лівій частині рівняння (4) невідомим є один із множників, який дорівнює частці від ділення добутку на відомий множник:

х = 20 : 5 = 4.

Отже, х = 4.

Всі рівняння (2) – (4), які отримувалась при здійсненні перетворень, рівносильні даному на основі теорем 1 і 2, а тому знайдений розв’язок х = 4 останнього рівняння буде і розвязком  рівняння (1).

Відповідь:  х {4}.  ◄


 

А также другие работы, которые могут Вас заинтересовать

56106. Словник-довідник труднощів української мови (вживання архаїзмів та історизмів) 1.31 MB
  Головне - дати дітям поштовх до роздуму, викликати бажання підносити рівень культури власного мовлення, дбайливо поводитись з найбільшим скарбом народу - його мовою, самовдосконалюватися, інтелектуально зростати.