18339

Хэш-функции

Реферат

Информатика, кибернетика и программирование

Хэшфункции Требования к хэшфункциям Хэшфункцией называется односторонняя функция предназначенная для получения дайджеста или отпечатков пальцев файла сообщения или некоторого блока данных. Хэшкод создается функцией Н: h = H M Где М является сообщением произв

Русский

2013-07-07

152 KB

40 чел.

Хэш-функции

Требования к хэш-функциям

Хэш-функцией называется односторонняя функция, предназначенная для получения дайджеста или "отпечатков пальцев" файла, сообщения или некоторого блока данных.

Хэш-код создается функцией Н: h = H (M)

Где М является сообщением произвольной длины и h является хэш-кодом фиксированной длины.

Хэш-функция Н, которая используется для аутентификации сообщений, должна обладать следующими свойствами:

Хэш-функция Н должна применяться к блоку данных любой длины.

Хэш-функция Н создает выход фиксированной длины.

Н (М) относительно легко (за полиномиальное время) вычисляется для любого значения М.

Для любого данного значения хэш-кода h вычислительно невозможно найти M такое, что Н (M) = h.

Для любого данного х вычислительно невозможно найти y x, что H (y) = H (x).

Вычислительно невозможно найти произвольную пару (х, y) такую, что H (y) = H (x).

Первые три свойства требуют, чтобы хэш-функция создавала хэш-код для любого сообщения.

Четвертое свойство определяет требование односторонности хэш-функции: легко создать хэш-код по данному сообщению, но невозможно восстановить сообщение по данному хэш-коду. Это свойство важно, если аутентификация с использованием хэш-функции включает секретное значение. Само секретное значение может не посылаться, тем не менее, если хэш-функция не является односторонней, противник может легко раскрыть секретное значение.

Пятое свойство гарантирует, что невозможно найти другое сообщение, чье значение хэш-функции совпадало бы со значением хэш-функции данного сообщения. Это предотвращает подделку аутентификатора при использовании зашифрованного хэш-кода. В данном случае противник может читать сообщение и, следовательно, создать его хэш-код. Но так как противник не владеет секретным ключом, он не имеет возможности изменить сообщение так, чтобы получатель этого не обнаружил . Если данное свойство не выполняется, атакующий имеет возможность выполнить следующую последовательность действий: перехватить сообщение и его зашифрованный хэш-код, вычислить хэш-код сообщения, создать альтернативное сообщение с тем же самым хэш-кодом, заменить исходное сообщение на поддельное. Поскольку хэш-коды этих сообщений совпадают, получатель не обнаружит подмены.

Хэш-функция, которая удовлетворяет первым пяти свойствам, называется простой или слабой хэш-функцией. Если кроме того выполняется шестое свойство, то такая функция называется сильной хэш-функцией. Шестое свойство защищает против класса атак, известных как атака "день рождения".

Простые хэш-функции

Все хэш-функции выполняются следующим образом. Входное значение (сообщение, файл и т.п.) рассматривается как последовательность n-битных блоков. Входное значение обрабатывается последовательно блок за блоком, и создается n-битное значение хэш-кода.

Одним из простейших примеров хэш-функции является побитный XOR каждого блока:

Сi = bi1  bi2  . . .  bik

Где Сi - i-ый бит хэш-кода, 1 i n,

k - число n-битных блоков входа.

bij - i-ый бит в j-ом блоке.

- операция XOR.

В результате получается хэш-код длины n, известный как продольный избыточный контроль. Это эффективно при случайных сбоях для проверки целостности данных.

Часто при использовании подобного продольного избыточного контроля для каждого блока выполняется однобитный циклический сдвиг после вычисления хэш-кода. Это даст эффект "случайности" входа и уничтожит любую регулярность, которая присутствует во входных значениях.

Хотя второй вариант считается более предпочтительным для обеспечения целостности данных и предохранения от случайных сбоев, он не может использоваться для обнаружения преднамеренных модификаций передаваемых сообщений. Зная сообщение, атакующий легко может создать новое сообщение, которое имеет тот же самый хэш-код. Для этого следует подготовить альтернативное сообщение и затем присоединить n-битный блок, который является хэш-кодом нового сообщения, и блок, который является хэш-кодом старого сообщения.

Хэш-функция MD5

Рассмотрим алгоритм получения дайджеста сообщения MD5 (RFC 1321), разработанный Роном Ривестом из MIT. Алгоритм получает на входе сообщение произвольной длины и создает в качестве выхода дайджест сообщения длиной 128 бит.


Рис.1.  Логика выполнения MD5

ABCD – инициализирующий вектор, состоящий из 4 подвекторов длиной 8 шестнадцатиричных цифр (4 байта). Yi –  i-ый блок исходного текста, HMD5 – модуль, состоящий из 4 циклических обработок.

Алгоритм MD4 является более ранней разработкой того же автора Рона Ривеста. Первоначально данный алгоритм был опубликован в октябре 1990 г., незначительно измененная версия была опубликована в RFC 1320 в апреле 1992 г. MD5 является более сложным и, следовательно, более медленным при выполнении, чем MD4. Считается, что добавление сложности оправдывается возрастанием уровня безопасности

Хэш-функции семейства SHA

Безопасный хэш-алгоритм SHA-1 (Secure Hash Algorithm) был разработан национальным институтом стандартов и технологии (NIST) и опубликован в качестве федерального информационного стандарта (FIPS PUB 180) в 1993 году. SHA-1, как и MD5, основан на алгоритме MD4.

Алгоритм получает на входе сообщение максимальной длины 264 бит и создает в качестве выхода дайджест сообщения длиной 160 бит.


Рис.2.  Логика выполнения SHA-1

Сравнение SHA-1 и MD5

MD5

SHA−1

Длина дайджеста

128 бит

160 бит

Размер блока обработки

512 бит

512 бит

Число итераций

64 (4 цикла по 16 итераций в каждом)

80

Число элементарных логических функций

4

3

Число дополнительных констант

64

4

В 2001 году NIST принял в качестве стандарта три хэш-функции с существенно большей длиной хэш-кода. Часто эти хэш-функции называют SHA-2 или SHA-256, SHA-384 и SHA-512 (соответственно, в названии указывается длина создаваемого ими хэш-кода). Эти алгоритмы отличаются не только длиной создаваемого хэш-кода, но и длиной обрабатываемого блока, длиной слова и используемыми внутренними функциями. Характеристики этих хэш-функций.

Алгоритм

Длина сообщения (в битах)

Длина блока (в битах)

Длина слова (в битах)

Длина дайджеста сообщения (в битах)

Безопасность (в битах)

SHA-1 

<264

512

32

160

80

SHA-256

<264

512

32

256

128

SHA-384

<2128

1024

64

384

192

SHA-512

<2128

1024

64

512

256

Под безопасностью здесь понимается стойкость к атакам класса "день рождения".

Хэш-функция ГОСТ 3411

Алгоритм ГОСТ 3411 является отечественным стандартом для хэш-функций. Его структура довольно сильно отличается от структуры алгоритмов SHA-1,2 или MD5, в основе которых лежит алгоритм MD4.

Длина хэш-кода, создаваемого алгоритмом ГОСТ 3411, равна 256 битам. Алгоритм разбивает сообщение на блоки, длина которых также равна 256 битам. Кроме того, параметром алгоритма является стартовый вектор хэширования Н - произвольное фиксированное значение длиной также 256 бит.

Сообщение обрабатывается блоками по 256 бит справа налево.

Коды аутентификации сообщений - МАС

В данном случае под МАС (Message Authentication Code) понимается некоторый аутентификатор, являющийся определенным способом вычисленным блоком данных, с помощью которого можно проверить целостность сообщения. В некоторой степени симметричное шифрование всего сообщения может выполнять функцию аутентификации этого сообщения. Но в таком случае сообщение должно содержать достаточную избыточность, которая позволяла бы проверить, что сообщение не было изменено. Избыточность может быть в виде определенным образом отформатированного сообщения, текста на конкретном языке и т.п. Если сообщение допускает произвольную последовательность битов (например, зашифрован ключ сессии), то симметричное шифрование всего сообщения не может обеспечивать его целостность, так как при дешифровании в любом случае получится последовательность битов, правильность которой проверить нельзя. Поэтому гораздо чаще используется критографически созданный небольшой блок данных фиксированного размера, так называемый аутентификатор или имитовставка, с помощью которого проверяется целостность сообщения. Этот блок данных может создаваться с помощью секретного ключа, который разделяют отправитель и получатель. МАС вычисляется в тот момент, когда известно, что сообщение корректно. После этого МАС присоединяется к сообщению и передается вместе с ним получателю. Получатель вычисляет МАС, используя тот же самый секретный ключ, и сравнивает вычисленное значение с полученным. Если эти значения совпадают, то с большой долей вероятности можно считать, что при пересылке изменения сообщения не произошло.

МАС на основе алгоритма симметричного шифрования

Для вычисления МАС может использоваться алгоритм симметричного шифрования (например, DES) в режиме СВС и нулевой инициализирующий вектор. В этом случае сообщение представляется в виде последовательности блоков, длина которых равна длине блока алгоритма шифрования. При необходимости последний блок дополняется справа нулями, чтобы получился блок нужной длины.

МАС на основе хэш-функции

Другим способом обеспечения целостности является использование хэш-функции. Хэш-код присоединяется к сообщению в тот момент, когда известно, что сообщение корректно. Получатель проверяет целостность сообщения вычислением хэш-кода полученного сообщения и сравнением его с полученным хэш-кодом, который должен быть передан безопасным способом. Одним из таких безопасных способов может быть шифрование хэш-кода закрытым ключом отправителя, т.е. создание подписи. Возможно также шифрование полученного хэш-кода алгоритмом симметричного шифрования, если отправитель и получатель имеют общий ключ симметричного шифрования.

НМАС

Еще один вариант использования хэш-функции для получения МАС состоит в том, чтобы определенным образом добавить секретное значение к сообщению, которое подается на вход хэш-функции. Такой алгоритм носит название НМАС, и он описан в RFC 2104.

В алгоритме НМАС хэш-функция представляет собой "черный ящик". Это, во-первых, позволяет использовать существующие реализации хэш-функций, а во-вторых, обеспечивает легкую замену существующей хэш-функции на новую.

Электронная цифровая подпись. Определения

Закон "Об электронной цифровой подписи" номер 1-ФЗ (принят Государственной Думой 13 декабря 2001 года) вводит следующие основные понятия:

Электронный документ - документ, в котором информация представлена в электронно-цифровой форме.

Электронная цифровая подпись - реквизит электронного документа, предназначенный для защиты данного электронного документа от подделки, полученный в результате криптографического преобразования информации с использованием закрытого ключа электронной цифровой подписи и позволяющий идентифицировать владельца сертификата ключа подписи, а также установить отсутствие искажения информации в электронном документе.

Владелец сертификата ключа подписи - физическое лицо, на имя которого удостоверяющим центром выдан сертификат ключа подписи и которое владеет соответствующим закрытым ключом электронной цифровой подписи, позволяющим с помощью средств электронной цифровой подписи создавать свою электронную цифровую подпись в электронных документах (подписывать электронные документы).

Средства электронной цифровой подписи - аппаратные и (или) программные средства, обеспечивающие реализацию хотя бы одной из следующих функций: создание электронной цифровой подписи в электронном документе с использованием закрытого ключа электронной цифровой подписи, подтверждение с использованием открытого ключа электронной цифровой подписи подлинности электронной цифровой подписи в электронном документе, создание закрытых и открытых ключей электронных цифровых подписей.

Сертификат средств электронной цифровой подписи - документ на бумажном носителе, выданный в соответствии с правилами системы сертификации для подтверждения соответствия средств электронной цифровой подписи установленным требованиям.

Закрытый ключ электронной цифровой подписи - уникальная последовательность символов, известная владельцу сертификата ключа подписи и предназначенная для создания в электронных документах электронной цифровой подписи с использованием средств электронной цифровой подписи.

Открытый ключ электронной цифровой подписи - уникальная последовательность символов, соответствующая закрытому ключу электронной цифровой подписи, доступная любому пользователю информационной системы и предназначенная для подтверждения с использованием средств электронной цифровой подписи подлинности электронной цифровой подписи в электронном документе.

Сертификат ключа подписи - документ на бумажном носителе или электронный документ с электронной цифровой подписью уполномоченного лица удостоверяющего центра, которые включают в себя открытый ключ электронной цифровой подписи и выдаются удостоверяющим центром участнику информационной системы для подтверждения подлинности электронной цифровой подписи и идентификации владельца сертификата ключа подписи.

Подтверждение подлинности электронной цифровой подписи в электронном документе - положительный результат проверки соответствующим сертифицированным средством электронной цифровой подписи с использованием сертификата ключа подписи принадлежности электронной цифровой подписи в электронном документе владельцу сертификата ключа подписи и отсутствия искажений в подписанном данной электронной цифровой подписью электронном документе.

Пользователь сертификата ключа подписи - физическое лицо, использующее полученные в удостоверяющем центре сведения о сертификате ключа подписи для проверки принадлежности электронной цифровой подписи владельцу сертификата ключа подписи.

Согласно Закону, электронная цифровая подпись в электронном документе равнозначна собственноручной подписи в документе на бумажном носителе при одновременном соблюдении следующих условий:

  •  сертификат ключа подписи, относящийся к этой электронной цифровой подписи, не утратил силу (действует) на момент проверки или на момент подписания электронного документа при наличии доказательств, определяющих момент подписания;
  •  подтверждена подлинность электронной цифровой подписи в электронном документе;
  •  электронная цифровая подпись используется в соответствии со сведениями, указанными в сертификате ключа подписи.

Закон определяет сведения, которые должен содержать сертификат ключа подписи:

  •  уникальный регистрационный номер сертификата ключа подписи, даты начала и окончания срока действия сертификата ключа подписи, находящегося в реестре удостоверяющего центра;
  •  фамилия, имя и отчество владельца сертификата ключа подписи или псевдоним владельца. В случае использования псевдонима запись об этом вносится удостоверяющим центром в сертификат ключа подписи;
  •  открытый ключ электронной цифровой подписи;
  •  наименование средств электронной цифровой подписи, с которыми используется данный открытый ключ электронной цифровой подписи;
  •  наименование и местонахождение удостоверяющего центра, выдавшего сертификат ключа подписи;
  •  сведения об отношениях, при осуществлении которых электронный документ с электронной цифровой подписью будет иметь юридическое значение.

Можно сформулировать следующие требования к цифровой подписи:

  1.  Подпись должна быть битовым образцом, который зависит от подписываемого сообщения.
  2.  Подпись должна использовать некоторую уникальную информацию отправителя для предотвращения подделки или отказа.
  3.  Создавать цифровую подпись должно быть относительно легко.
  4.  Должно быть вычислительно невозможно подделать цифровую подпись как созданием нового сообщения для существующей цифровой подписи, так и созданием ложной цифровой подписи для некоторого сообщения.
  5.  Цифровая подпись должна быть достаточно компактной и не занимать много памяти.

Сильная хэш-функция, зашифрованная закрытым ключом отправителя, удовлетворяет перечисленным требованиям.

Существует несколько подходов к использованию функции цифровой подписи. Все они могут быть разделены на две категории: прямые и арбитражные.

Прямая и арбитражная цифровые подписи

При использовании прямой цифровой подписи взаимодействуют только сами участники, т.е. отправитель и получатель. Предполагается, что получатель знает открытый ключ отправителя. Цифровая подпись может быть создана шифрованием всего сообщения или его хэш-кода закрытым ключом отправителя.

Конфиденциальность может быть обеспечена дальнейшим шифрованием всего сообщения вместе с подписью открытым ключом получателя (асимметричное шифрование) или разделяемым секретным ключом (симметричное шифрование). Заметим, что обычно функция подписи выполняется первой, и только после этого выполняется функция конфиденциальности. В случае возникновения спора некая третья сторона должна просмотреть сообщение и его подпись. Если функция подписи выполняется над зашифрованным сообщением, то для разрешения споров придется хранить сообщение как в незашифрованном виде (для практического использования), так и в зашифрованном (для проверки подписи). Либо в этом случае необходимо хранить ключ симметричного шифрования, для того чтобы можно было проверить подпись исходного сообщения. Если цифровая подпись выполняется над незашифрованным сообщением, получатель может хранить только сообщение в незашифрованном виде и соответствующую подпись к нему.

Все прямые схемы, рассматриваемые далее, имеют общее слабое место. Действенность схемы зависит от безопасности закрытого ключа отправителя. Если отправитель впоследствии не захочет признать факт отправки сообщения, он может утверждать, что закрытый ключ был потерян или украден, и в результате кто-то подделал его подпись. Можно применить административное управление, обеспечивающее безопасность закрытых ключей, для того чтобы, по крайней мере, хоть в какой-то степени ослабить эти угрозы. Один из возможных способов состоит в требовании в каждую подпись сообщения включать отметку времени (дату и время) и сообщать о скомпрометированных ключах в специальный центр.

Другая угроза состоит в том, что закрытый ключ может быть действительно украден у Х в момент времени Т. Нарушитель может затем послать сообщение, подписанное подписью Х и помеченное временной меткой, которая меньше или равна Т.

Проблемы, связанные с прямой цифровой подписью, могут быть частично решены с помощью арбитра. Существуют различные схемы с применением арбитражной подписи. В общем виде арбитражная подпись выполняется следующим образом. Каждое подписанное сообщение от отправителя Х к получателю Y первым делом поступает к арбитру А, который проверяет подпись для данного сообщения. После этого сообщение датируется и посылается к Y с указанием того, что оно было проверено арбитром. Присутствие А решает проблему схем прямой цифровой подписи, при которых Х может отказаться от сообщения. Арбитр играет важную роль в подобного рода схемах, и все участники должны ему доверять. Существуют следующие возможные технологии арбитражной цифровой подписи: 

Симметричное шифрование, арбитр видит сообщение: 

Х  A: M || EKxa [ IDX || H (M)]

Предполагается, что отправитель Х и арбитр А разделяют секретный ключ KХА и что А и Y разделяют секретный ключ KАY. Х создает сообщение М и вычисляет его хэш-значение Н (М). Затем Х передает сообщение и подпись А. Подпись состоит из идентификатора Х и хэш-значения, все зашифровано с использованием ключа KХА. А дешифрует подпись и проверяет хэш-значение.

A  Y: ЕКay [ IDX || M ||

      EKxa [IDX || H (M)], T ]

Затем А передает сообщение к Y, шифруя его KAY. Сообщение включает IDX, первоначальное сообщение от Х, подпись и отметку времени. Y может дешифровать его для получения сообщения и подписи. Отметка времени информирует Y о том, что данное сообщение не устарело и не является повтором. Y может сохранить М и подпись к нему. В случае спора Y, который утверждает, что получил сообщение М от Х, посылает следующее сообщение к А:

ЕКay [ IDX || M || EKxa [IDX || H (M)] ]

Арбитр использует KAY для получения IDХ, М и подписи, а затем, используя KХА, может дешифровать подпись и проверить хэш-код. По этой схеме Y не может прямо проверить подпись Х; подпись используется исключительно для разрешения споров. Y считает сообщение от Х аутентифицированным, потому что оно прошло через А. В данном сценарии обе стороны должны иметь высокую степень доверия к А:

  1.  Х должен доверять А в том, что тот не будет раскрывать KХА и создавать фальшивые подписи в форме ЕKка [IDX || H (M)].
  2.  Y должен доверять А в том, что он будет посылать ЕKay [ IDX || M || EKxa [IDX || H (M)] ] только в том случае, если хэш-значение является корректным и подпись была создана Х.
  3.  Обе стороны должны доверять А в решении спорных вопросов.

Симметричное шифрование, арбитр не видит сообщение: 

Если арбитр не является такой доверенной стороной, то Х должен добиться того, чтобы никто не мог подделать его подпись, а Y должен добиться того, чтобы Х не мог отвергнуть свою подпись.

Предыдущий сценарий также предполагает, что А имеет возможность читать сообщения от Х к Y и что возможно любое подсматривание. Рассмотрим сценарий, который, как и прежде, использует арбитраж, но при этом еще обеспечивает конфиденциальность. В таком случае также предполагается, что Х и Y разделяют секретный ключ KXY.

X  A: IDX || EKхy [M] ||

      EKxa [IDX || H (EKXY [M]) ]

Х передает А свой идентификатор, сообщение, зашифрованное KXY, и подпись. Подпись состоит из идентификатора и хэш-значения зашифрованного сообщения, которые зашифрованы с использованием ключа KХА. А дешифрует подпись и проверяет хэш-значение. В данном случае А работает только с зашифрованной версией сообщения, что предотвращает его чтение.

A  Y: EKay [ IDX || EKXY[M] ||

      EKxa [ IDX || H ( EKXY [M])], T]

А передает Y все, что он получил от Х плюс отметку времени, все шифруя с использованием ключа KAY.

Хотя арбитр и не может прочитать сообщение, он в состоянии предотвратить подделку любого из участников, Х или Y. Остается проблема, как и в первом сценарии, что арбитр может сговориться с отправителем, отрицающим подписанное сообщение, или с получателем, для подделки подписи отправителя.

Шифрование открытым ключом, арбитр не видит сообщение: 

Все обсуждаемые проблемы могут быть решены с помощью схемы открытого ключа.

X  A: IDX || EKRх [ IDX || EKUy [EKRx [M] ] ]

В этом случае Х осуществляет двойное шифрование сообщения М, сначала своим закрытым ключом KRX, а затем открытым ключом Y   KUY. Получается подписанная секретная версия сообщения. Теперь это подписанное сообщение вместе с идентификатором Х шифруется KRX и вместе с IDX посылается А. Внутреннее, дважды зашифрованное, сообщение недоступно арбитру (и всем, исключая Y). Однако А может дешифровать внешнюю шифрацию, чтобы убедиться, что сообщение пришло от Х (так как только Х имеет KRX). Проверка дает гарантию, что пара закрытый/открытый ключ законна, и тем самым верифицирует сообщение.

A  Y: EKRa [ IDX || EKUy [EKRx [M] ] || T ]

Затем А передает сообщение Y, шифруя его KRA. Сообщение включает IDX, дважды зашифрованное сообщение и отметку времени.

Эта схема имеет ряд преимуществ по сравнению с предыдущими двумя схемами. Во-первых, никакая информация не разделяется участниками до начала соединения, предотвращая договор об обмане. Во-вторых, некорректные данные не могут быть посланы, даже если KRX скомпрометирован, при условии, что не скомпрометирован KRА 

Стандарт цифровой подписи DSS

Национальный институт стандартов и технологии США (NIST) разработал федеральный стандарт цифровой подписи   DSS (Digital Signature Standard). Криптостойкость основана на вычислительной сложности задачи логарифмирования целых чисел в конечных полях.

Для создания цифровой подписи используется Асимметричный алгоритм ElGamal. В качестве хэш-алгоритма стандарт предусматривает использование алгоритма SHA-1 (Secure Hash Algorithm). DSS первоначально был предложен в 1991 году и пересмотрен в 1993 году в ответ на публикации, касающиеся безопасности его схемы.

DSS использует алгоритм, который разрабатывался для использования только в качестве цифровой подписи. В отличие от RSA, его нельзя использовать для шифрования или обмена ключами. Тем не менее, это технология открытого ключа.

В подходе RSA подписываемое сообщение подается на вход сильной хэш-функции, которая создает хэш-код фиксированной длины. Для создания подписи этот хэш-код шифруется с использованием закрытого ключа отправителя. Затем сообщение и подпись пересылаются получателю. Получатель вычисляет хэш-код сообщения и проверяет подпись, используя открытый ключ отправителя. Если вычисленный хэш-код равен дешифрованной подписи, то считается, что подпись корректна.


Рис. 3.  Создание и проверка подписи с помощью стандарта DSS

DSS использует сильную хэш-функцию. Для начала вычисляется открытый ключ y из закрытого ключа x как у = gx mod p. Для создания подписи отправитель вычисляет две величины, r и s, которые являются функцией от компонент открытого ключа (p, q, g), закрытого ключа пользователя (х), хэш-кода сообщения Н (М) и целого k, которое должно быть создано случайно или псевдослучайно и должно быть уникальным при каждом подписывании.

r = (gk mod p) mod q

s = [ k-1 (H (M) + xr) ] mod q

Подпись = (r, s)

Для проверки подписи получатель создает величину v, которая является функцией от компонент общего открытого ключа, открытого ключа отправителя и хэш-кода полученного сообщения. Если эта величина равна компоненте r в подписи, то подпись считается действительной.

w = s-1 mod q

u1 = [ H (M) w ] mod q

u2 = r w mod q

v = [ (gu1 yu2) mod p ] mod q

подпись корректна, если v = r

Стандарт цифровой подписи ГОСТ 3410

В отечественном стандарте ГОСТ 3410, принятом в 1994 году, используется алгоритм, аналогичный алгоритму, реализованному в стандарте DSS. Оба алгоритма относятся к семейству алгоритмов ElGamal.

В стандарте ГОСТ 3410 используется хэш-функция ГОСТ 3411, которая создает хэш-код длиной 256 бит.

Подписи, созданные с использованием стандартов ГОСТ 3410 или DSS, называются рандомизированными, так как для одного и того же сообщения с использованием одного и того же закрытого ключа каждый раз будут создаваться разные подписи (r,s), поскольку каждый раз будет использоваться новое значение k. Подписи, созданные с применением алгоритма RSA, называются детерминированными, так как для одного и того же сообщения с использованием одного и того же закрытого ключа каждый раз будет создаваться одна и та же подпись.


 

А также другие работы, которые могут Вас заинтересовать

68748. АНГЛІЙСЬКА МОВА: ЗБІРКА ЗАВДАНЬ ТА РОЗДАТКОВИХ КАРТОК 37.97 MB
  Приоритети роботи за даною навчально-методичною збіркою: автентичні взірці мовлення, потреби професійного спілкування, розвиток особистостей студентів, їх висока вмотивованість, осмислення індивідуальних способів навчальної роботи, розуміння шляхів подоляння особистих комунікативних вад...
68749. ЗБІРКА ЗАВДАНЬ ТА РОЗДАТКОВИХ КАРТОК: АНГЛІЙСЬКА МОВА 29.06 MB
  Ці матеріали складено у відповідності до програми навчальної дисципліни «Іноземна мова», зокрема, частини, що стосується ІІ етапу навчання у групах поглибленого вивчення англійської мови. Дана навчально - методична праця призначена для студентів і є допоміжною літературою для конкретизації кожного заняття...
68751. Друга іноземна (англійська) мова: Словник-мінімум 120 KB
  Словник побудовано на текстовому матеріалі підручника S. Le Maistre, C. Lewis “Language to go” розділи 21-40, в яких розглядаються такі теми, як людина та її оточення: подорожування, відпочинок, свята, покупки, кіно, хвороби, їжа, характер людини, робота тощо.
68752. English for future financiers 1.4 MB
  Each unit includes the main text with a vocabulary, a few additional texts and supporting exercises designed to develop students’ English language skills in reading, speaking, listening and writing. Most tasks are intended for work in pairs or in small groups to help students develop the interpersonal...
68753. Англійська мова (додатково): Навчально-методичний посібник 467.5 KB
  Мета навчально-методичного посібника – допомогти студентам раціонально розподілити й засвоїти програмний навчальний матеріал, правильно організувати самостійну роботу, навчити застосовувати набуті знання й навички при спілкуванні з носіями англійської мови, розвити між культурну комунікативну компетенцію та її складові.