18426

Классификация средств измерения давления. Общепромышленные измерительные преобразователи давления

Лекция

Менеджмент, консалтинг и предпринимательство

Лекция 11. Классификация средств измерения давления. Общепромышленные измерительные преобразователи давления. Классификация средств измерения давления. Для прямого измерения давления жидкой или газообразной среды с отображением его значения непосредственно н...

Русский

2013-07-08

116 KB

65 чел.

Лекция 11.

Классификация средств измерения давления. Общепромышленные измерительные преобразователи давления.

Классификация средств измерения давления.

Для прямого измерения давления жидкой или газообразной среды с отображением его значения непосредственно на шкале, табло или индикаторе первичного измерительного прибора применяются манометры (ГОСТ 8.271-77).

Если отображение значения давления на самом первичном приборе не производится, но он позволяет получать и дистанционно передавать соответствующий измеряемому параметру сигнал, то такой прибор называют измерительным преобразователем давления (ИПД), или датчиком давления. Возможно объединение этих двух свойств в одном приборе (манометр-датчик).

Манометры классифицируют по принципу действия и конструкции, по виду измеряемого давления, по применению и назначению, по типу отображения данных и другим признакам (рис. 1).  

По принципу действия манометры можно подразделить на жидкостные (измеряемое давление уравновешивается гидростатически столбом жидкости — воды, ртути — соответствующей высоты), деформационные (давление определяется по величине деформации и перемещения упругого чувствительного элемента УЧЭ — мембраны, трубчатой пружины, сильфона), грузопоршневые (измеряемое или воспроизводимое давление гидростатически уравновешивается через жидкую или газообразную среду прибора давлением веса поршня с грузоприемным устройством и комплектом образцовых гирь), электрические (давление определяется на основании зависимости электрических параметров: сопротивления, емкости, заряда, частоты — чувствительного элемента ЧЭ от измеряемого давления) и другие (тепловые, ионизационные, термопарные и т.п.).

В промышленности при локальных измерениях давлений энергоносителей в большинстве случаев используются деформационные манометры на основе одновитковой трубчатой пружины — трубки Бурдона — для прямопоказывающих стрелочных приборов или с многовитковыми пружинами для самопишущих манометров), но на смену им всё чаще приходят электрические манометры с цифровым табло и развитой системой интерфейсов.

По виду измеряемого давления манометры подразделяют на приборы измерения избыточного и абсолютного давления — собственно  манометры, разрежения — вакуумметры, давления и разрежения — мановакуумметры, атмосферного давления — барометры и разностного давления — дифференциальные манометры (дифманометры). Манометры, вакуумметры и мановакуумметры для измерения небольших (до 20 - 40 кПа) давлений газовых сред называют соответственно напоромерами, тягомерами и тягонапоромерами, а дифманометры с таким диапазоном измерения — микроманометрами (ГОСТ 8.271-77). Технические характеристики всех этих средств измерения давления определяются соответствующими общими техническими условиями (ГОСТ 2405-88, ГОСТ 18140-81 и другими).

По области применения манометры подразделяют на общепромышленные, или технические, работающие в промышленных условиях (при перепадах температур и влажности окружающей среды, вибрациях, загрязнении внешней среды и т.п.), лабораторные (приборы повышенной точности для использования в комфортных и стабильных условиях лабораторий), специальные (применяются в экстремальных условиях: на железнодорожном транспорте, судах, котельных установках, при работе с кислотными и другими агрессивными средами), образцовые (для поверки рабочих манометров) и эталонные (хранители единиц давления с целью передачи их образцовым приборам).

 


Рис. 1. Классификация манометров

По типу отображения значений измеряемого давления манометры подразделяют на прямопоказывающие — с визуальным считыванием данных непосредственно по аналоговой (стрелочной) или цифровой шкале прибора, на сигнализирующие (электроконтактные) — с выдачей управляющего электрического сигнала путем замыкания или размыкания контактов при достижении измеряемым давлением заранее установленного контрольного значения, на регистрирующие (самопишущие) — с записью в память значений давления как функции времени и их отображением на электронном табло.

Манометры выполняют функцию локального контроля и в большинстве случаев из-за отсутствия возможности дистанционного доступа к их показаниям (за исключением манометров с унифицированным выходным электрическим сигналом) не могут использоваться для целей современной автоматизации. Такую возможность обеспечивают измерительные преобразователи давления (рис. 2).

Рис. 2. Классификация измерительных преобразователей давления

По способу обработки и отображения измеряемого давления ИПД подразделяют на первичные (формируют для дистанционной передачи выходной сигнал, соответствующий измеряемому давлению) и вторичные (получают сигнал от первичных преобразователей, обрабатывают его, накапливают, отображают и передают на более высокий уровень системы). Современная тенденция развития ИПД заключается в их «интеллектуализации» на базе микроэлектронной технологии  и микропроцессорной техники, предполагающей передачу части функций системы управления вторичным преобразователям, а некоторых традиционных функций вторичных преобразователей — первичным.

Известны десятки способов преобразования давления в электрический сигнал, но только некоторые из них получили широкое применение в общепромышленных ИПД. По принципу действия, или способу преобразования измеряемого давления в выходной сигнал, первичные ИПД подразделяют прежде всего на деформационные и электрические. В первых деформационные перемещения УЧЭ (мембраны, сильфона, трубки Бурдона) трансформируются с помощью дополнительных промежуточных механизмов и преобразователей (например, магнитотранзисторного или оптоэлектронного) в электрический или электромагнитный сигнал, а во вторых измеряемое давление, оказывая воздействия на ЧЭ, изменяет его собственные электрические параметры: сопротивление, ёмкость или заряд, которые становятся мерой этого давления. Подавляющее большинство современных общепромышленных ИПД реализованы на основе ёмкостных (используют УЧЭ в виде конденсатора с переменным зазором: смещение или прогиб под действием прилагаемого давления подвижного электрода-мембраны относительно неподвижного изменяет ёмкость УЧЭ), пьезоэлектрических (основаны на зависимости поляризованного заряда или резонансной частоты пьезокристаллов: кварца, турмалина и других — от давления) или тензорезисторных (используют зависимость активного сопротивления проводника или полупроводника от степени его деформации) принципах. В последние годы получили развитие и другие принципы создания ИПД: волоконно-оптические, гальваномагнитные, объемного сжатия, акустические, диффузионные и т. д.

На сегодняшний день самыми популярными в СНГ являются тензорезисторные ИПД. Тензорезисторные чувствительные элементы ТРЧЭ (в переводной литературе их иногда называют пьезорезисторными, не надо путать с пьезоэлектрическими) представляют собой металлическую и/или диэлектрическую измерительную мембрану, на которой размещаются тензорезисторы (чаще всего в виде уравновешенного измерительного моста) с контактными площадками для проводного подключения к внутренней или внешней электроизмерительной схеме — электронному блоку обработки. Деформация мембраны под воздействием внешнего давления Р приводит к локальным деформациям тензорезисторного моста и его разбалансу — изменению сопротивления, которое измеряется электронным блоком (рис. 3).

Рис. 3. Структурная схема первичного тензорезисторного ИПД

Тензорезисторы (ТР) выполняются как из металла (проволочные, фольговые или пленочные), так и из полупроводника (поликристаллические из порошкообразного полупроводника и монокристаллические из кристалла кремния). Поскольку чувствительность полупроводниковых ТР в десятки раз выше, чем у металлических, и, кроме того, интегральная технология позволяет в одном кристалле кремния формировать одновременно как тензорезисторы, так и микроэлектронный блок обработки, то в последние годы получили преимущественное развитие интегральные полупроводниковые ТРЧЭ. Такие элементы реализуются либо по технологии диффузионных резисторов с изоляцией их от проводящей кремниевой подложки p-n переходами — технология «кремний на кремнии», либо по гетероэпитаксиальной технологии «кремний на диэлектрике» на стеклокерамике, кварце или сапфире. Для ТРЧЭ, особенно полупроводниковых, существенно влияние температуры на упругие и электрические характеристики ТР, что требует применения специальных схем температурной компенсации погрешностей (в частности, с этой целью в расширенной схеме тензомоста используются компенсационные резисторы и терморезисторы). Особенно широкое применение в изготовлении общепромышленных ИПД в силу своих высоких механических, изолирующих и теплоустойчивых качеств получила технология КНС — «кремний на сапфире».

По выходному сигналу ИПД подразделяются на аналоговые и цифровые.

Основной парк действующих ИПД относится к аналоговым с унифицированным токовым сигналом 0...5, 0...20 или 4...20 мA. В последнее десятилетие наметился переход к ИПД с цифровым выходом. Широкое распространение получил цифровой протокол HART. Этот открытый стандартный гибридный протокол двунаправленной связи предусматривает передачу цифровой информации поверх стандартного аналогового сигнала 4-20 мA. Бурно развивается системная интеграция первичных преобразователей с использованием различных разновидностей промышленных сетей Foundation (Fieldbus, ModBus, Profibus и др.). При этом используется полностью цифровой коммуникационный протокол для передачи информации в обоих направлениях между ИПД и системами управления, существенно облегчая взаимозаменяемость приборов разных мировых производителей. В отечественных цифровых ИПД пока преобладают такие цифровые интерфейсы, как ДДПК (двоично-десятичный параллельный код), ИРПС (интерфейс радиальный последовательный) и RS-232C.

ИПД различаются, кроме того, по видам измеряемого давления, используемым единицам измерения и ряду основных технических параметров (ГОСТ 22520_85): диапазону измеряемого давления (выбирается для каждой модели из стандартного ряда давлений), пределу основной допускаемой погрешности (определяется при нормальной температуре + 25°С от верхнего предела диапазона измерения и включает в себя, как правило, погрешности от гистерезиса ЧЭ, его линейности и воспроизводимости результатов измерения), пределу дополнительной температурной погрешности (этот предел задается от изменения температуры относительно нормальной на каждые 10 или 28 °С или на весь температурный диапазон работы), допустимому рабочему диапазону температур окружающей среды (иногда дополнительно указывают допустимый и диапазон температур технологического процесса или измеряемой среды и корпуса прибора), динамическому диапазону измерения давлений (отношению максимального значения измеряемого давления к минимальному), стабильности метрологических характеристик во времени (как процент от верхнего предела диапазона измерения в течение 6 или 12 месяцев), устойчивости к вибрациям, защите от высокочастотных помех, климатическим и взрывозащищенным исполнениям
(ГОСТ 15150-69 и ГОСТ 14254-96), требованиям к источнику питания и по другим параметрам.

Общепромышленные измерительные преобразователи давления

В реальных условиях пользователь вынужден рассматривать различные рабочие характеристики множества ИПД, чтобы выбрать из них оптимальный для конкретных условий применения, причем этот выбор зависит от многих факторов (стоимость, точность, температура, вид среды, информационная, конструктивная и технологическая совместимость со средствами обработки верхнего уровня системы и т.д.). Выбор по единственному критерию «чем дешевле, тем лучше» чаще всего приводит к ложной экономии, если в комплексе не учитываются дополнительные затраты конкретного применения, эксплуатационные издержки и показатели надёжности.

Современные общепромышленные ИПД — это интеллектуальные, со встроенным микропроцессором, интегральные преобразователи с цифровым интерфейсом. Они обладают свойствами диагностики и конфигурирования на расстоянии (установка нуля и диапазона шкалы, выбор технических единиц, ввод данных для идентификации и физического описания
датчика и т. п.), обеспечивают более высокое соотношение измеряемых диапазонов, улучшенную температурную компенсацию, повышенную основную точность. Однако это не значит, что другие ИПД уже не нужны: каждый тип ИПД имеет свою эффективную пользовательскую нишу.

PAGE  60


Взаимная индуктивность

Программируе-мые контроллеры

ногофункци-ональные преобразователи

Самописцы

Измерительные мосты

4…20 мА

0…5 мА

0…20 мА

Промышленная сеть Fieldbus

HART

RS-232, RS-485

ИРПС

Двоично-десятич-ный параллель-ный код

Сопротивление

Напряжение

Ток

Частота

Ёмкость

Электросигнал

Цифровой

Аналоговый

По выход-ному сигналу

Дискретные

Интегральные

Металлические

Полупроводниковые

Пьезоэлектрические

Дифма-нометры

Мановакууметры

Вакууметры

Эталонные

Грузопоршневые

Пьезоэлектрические

Емкостные

Резистивные

Электрические

Сильфонные

Мембранные

Трубчатые

Деформационные

Двухчашечные

U-образные

Однотрубные

Жидкостные

По принципу действия

МАНОМЕТРЫ

Тензорезисторные

Ёмкостные

Деформационные

Электрические

Вторичные

По принципу действия

Первичные 

Измерительные преобразователи давления

Образцовые

Барометры

Абсолютногодавления

Эталонные

Специальные

Баровакууметры

Избыточного давления

По виду давления

Лабораторные

Промышлен-ные

По применению

Сигнализирующие

Прямопоказывающие

По отображению


 

А также другие работы, которые могут Вас заинтересовать

83877. Малый сальник, сальниковая сумка, стенки, отверстие, связь с другими отделами. Способы осуществления доступа к поджелудочной железе 69.84 KB
  В зависимости от локализации патологического процесса и характера оперативного вмешательства производят различные разрезы передней брюшной стенки. Для обнажения тела и хвоста поджелудочной железы чаще применяют верхний срединный разрез который в случае необходимости можно расширить путем пересечения прямых мышц живота. Для подхода к головке поджелудочной железы особенно если одновременно предполагают вмешательство на желчных путях целесообразно применять разрезы С. Разрез проводят параллельно XII ребру справа если необходимо подойти к...
83878. Хирургическая анатомия печени. Связки, доли, ворота, кровеносные сосуды. Хирургическая анатомия печёночно – двенадцатипертной связки, элементы 54.27 KB
  Нижний край острый с двумя вырезками вдавление от желчного пузыря и вырезки круглой связки печени. Поперечная борозда соответствует воротам печени. Левая продольная борозда глубокая щель отделяющая левую долю печени от правой.
83879. Холецистэктомия. Лапароскопическая холецистэктомия. Треугольник Кало. Показания, техника выполнения, анатомические сложности 50.01 KB
  Границы треугольника: 1 пузырный проток латерально; 2 общий печеночный проток медиально; 3 правая ветвь собственной печеночной артерии сверху пузырная артерия сама нередко образует верхнюю границу треугольника Холецистэктомия Показания: воспаление желчного пузыря желчнокаменная болезнь опухоль желчного пузыря. Оперативный прием: существуют два способа выделения пузыря: от дна и от шейки. Холецистэктомия от шейки пузыря Выделение пузырного протока и пузырной артерии. Производят выделение и удаление желчного пузыря.
83880. Хирургическая анатомия желчного пузыря и желчных протоков. Варианты желчных протоков. Дренирование желчных протоков 78.03 KB
  Хирургическая анатомия желчного пузыря Желчный пузырь представляет собой грушевидной формы резервуар для желчи располагающийся между правой и квадратной долями печени. Шейка желчного пузыря продолжается в пу зырный проток направлена в сторону ворот печени и залегает вместе с пузырным протоком в печеночнодвенадцатиперстной связке. С\'келетотопия: дно желчного пузыря определяется спереди.
83881. Хирургическая анатомия желудка. Отделы, кровеносные сосуды, нервы и лимфатические пути 54.69 KB
  Отделы желудка Желудок имеет достаточно специфическую форму. В нем можно выделить несколько отделов которые отличаются в функциональном отношении и по своему гистологическому строению: кардиальный отдел дно желудка тело желудка и пилорический отдел. Кардиальный отдел или кардия желудка назван так за то что он располагается в непосредственной близости к сердцу.
83882. Хирургическая анатомия двенадцатиперстной кишки. Отделы, кровеносные сосуды. Большой и малый дуоденальные сосочки 50.97 KB
  Верхняя часть луковица двенадцатиперстной кишки располагается между привратником желудка и верхним изгибом двенадцатиперстной кишки. Нисходящая часть двенадцатиперстной кишки образует более или менее выраженный изгиб вправо и идет от верхнего до нижнего изгибов. В эту часть открываются обший желчный проток и проток поджелудочной железы на большом сосочке двенадцатиперстной кишки.
83883. Хирургическая анатомия поджелудочной железы и спленэктомия 51.49 KB
  Она имеет: переднюю поверхность к которой выше брыжейки поперечной ободочной кишки прилегает антральная часть желудка а ниже петли тонкой кишки; заднюю поверхность к которой прилегают правая почечная артерия и вена общий жёлчный проток и нижняя полая вена; верхний и нижний края. Тело имеет: переднюю поверхность к которой прилегает задняя стенка желудка; заднюю поверхность к которой прилегают аорта селезёночная и верхняя брыжеечная вены; нижнюю поверхность к которой снизу прилегает дена дцатиперстнотощекишечный изгиб; верхний...
83884. Хирургическая тактика при проникающих ранениях брюшной полости Тактика при ранении паренхиматозных и полых органов 50.73 KB
  Для осмотра селезенки желудок оттягивают вправо а левый изгиб ободочной кишки книзу. При обнаружении в брюшинной полости содержимого желудочнокишечного тракта сначала осматривают переднюю стенку желудка его пилорическиий отдел верхнюю горизонтальную часть двенадцатиперстной кишки а затем заднюю стенку желудка для чего рассекают желудочноободочную связку. Для обнаружения источника повреждения задней стенки нисходящей части двенадцатиперстной кишки рассекают париетальный листок брюшины по её наружному краю по Кохеру и мобилизовав...
83885. Операции при перфоративной язве желудка и двенадцатиперстной кишки. Техника выполнения. Тактика при перфорации опухоли желудка 51.17 KB
  Тактика при перфорации опухоли желудка. Ушивание прободной язвы желудка и двенадцатиперстной кишки При прободной язве желудка возможно выполнение двух видов срочных оперативных вмешательств: ушивание прободной язвы или резекция желудка вместе с язвой. При ушивании перфорационного отверстия необходимо придерживаться следующих правил: дефект в стенке желудка или двенадцатиперстной кишке ушивается обычно двумя рядами серозномышечных швов линия швов должна быть направлена перпендикулярно к продольной оси органа во избежание стеноза просвета...