18427

Автоматическое измерение расхода жидких и газообразных продуктов и сыпучих сред

Лекция

Менеджмент, консалтинг и предпринимательство

Лекция 12. Автоматическое измерение расхода жидких и газообразных продуктов и сыпучих сред. Расход вещества характеризуется количеством вещества объемным или массовым проходящим через определенное сечение канала трубопровода потока водослива и т. д. в единицу вре

Русский

2013-07-08

237 KB

48 чел.

Лекция 12.

Автоматическое измерение расхода жидких и газообразных продуктов и сыпучих сред.

Расход вещества характеризуется количеством вещества (объемным или массовым), проходящим через определенное сечение канала (трубопровода, потока водослива и т. д.) в единицу времени.

Объемными единицами расхода принято считать м3; м3/мин; м3/ч, а массовыми единицами измерения расхода считают: кг/ч; т/ч. Для пересчета массового расхода Qm в объемный Qv используют выражение:

где ρ – плотность среды в рабочих условиях.

Технологические параметры, связанные с измерением расхода, играют важную роль при управлении процессами добычи и переработки полезных ископаемых.

Большое разнообразие продуктов, расход которых необходимо учитывать в процессах горного производства, породило и большое разнообразие методов и средств их автоматического измерения.

Так, мы сталкиваемся с необходимостью измерения расхода жидких продуктов: воды, пульпы, разнообразных реагентов; газообразных продуктов: воздуха в различные точки флотационного процесса, пара, газа, подаваемого в печи для сушки руды и концентратов. Расход сыпучих материалов (руда, концентраты, компоненты шихты, уголь и т. п.) осуществляется с целью расчета материального и технологического баланса, эффективного управления процессами переработки полезных ископаемых. Кроме того, в процессе обогащения руд цветных металлов осуществляют измерение расхода твердого продукта в пульпе.

В технике измерения расхода, как было сказано выше, различают объемные расходы, используемые для количественного учета жидких и газообразных сред (кроме пара), и массовые расходы для сыпучих материалов и пара.

Объемные расходы измеряются в основном в м/ч, массовые расходы в т/ч. Диапазон изменения измеряемых расходов жидких, газообразных и сыпучих материалов очень широк, в связи, с чем для целей их измерения используется большое количество разнообразных технических средств.

Автоматические измерения расхода жидких и газообразных продуктов. Для измерения объемного расхода жидкости и газа используют расходомеры:

переменного перепада давления;

индукционные; щелевые или переменного уровня;

вихревые;

постоянного перепада давления;

ультразвуковые; тепловые и др.

Расходомеры переменного перепада давления. Применяют для измерения объемного расхода воздуха, газа, топлива, жидкости, очищенных от твердых включений (чистой и оборотной воды, реагентов). Принцип действия расходомеров переменного перепада давления основан на измерении перепада давления на участке трубопровода со стандартным сужающим устройством (рис. 1). В качестве стандартных сужающих устройств применяют: стандартные диафрагмы, сопла, сопла Вентури. Таким образом, расходомер - это участок трубопровода со встроенным сужающим устройством и последующих устройств преобразования разности давления.

Рис. 1. Структурная схема системы автоматического контроля расхода жидкости методом переменного перепала давления

Повышение скорости вещества на участке с уменьшенным диаметром сопровождается понижением давления за сужающим устройством. Количественно объемный расход вещества определяется по формуле:



 где Q – объемный расход, м3/час;

k – конструктивный коэффициент, зависит от вида и параметров сужающего устройства, а

     также от соотношения площадей поперечного сечения сужающего устройства и

     трубопровода, м2;

D – площадь поперечного сечения сужающего устройства, м2;

ρ – плотность контролируемой среды, кг/м3; 

– перепад (разность) давлений, кПа.

Индукционные расходомеры. Применяются для измерения объемных расходов электропроводящих жидкостей (рудные пульпы, реагенты). Принцип действия основан на явлении электромагнитной индукции, сущность которого заключается в том, что в проводнике, движущемся в магнитном поле с индукцией В, наводится ЭДС, прямо пропорциональная величине этой индукции, длине проводника и скорости перемещения проводника, т. е.


 


где    Е - величина электродвижущей силы;

В - магнитная индукция;

 l - длина проводника;

V - скорость движения проводника.

Конструктивно такой расходомер представляет собой участок трубопровода из немагнитного материала диаметром D, помещенный в поле постоянного магнита с индукцией В (рис. 2).

Рис. 2. К пояснению принципа действия индукционного расходомера

В трубопровод с диаметрально противоположных сторон встроены электроды для снятия ЭДС. В качестве проводника рассматривается участок жидкости между электродами длиной

l D. Скорость движения жидкости в трубопроводе известного диаметра определяется:


где  
 Q - объемный расход жидкости;

F - площадь поперечного сечения трубопровода.

С учетом последнего выражение для ЭДС запишется:

Учитывая, что и подставив его в выражение для ЭДС, получим:


Принимая во внимание, что В = const для магнитной системы определенного типа и D = const для конкретной конструкции, найдем:

где  - некоторый постоянный коэффициент.

Расходомеры щелевые (или расходомеры переменного уровня). Расходомеры этого типа (их называют еще расходомерами истечения) применяют для измерения расхода жидкости, находящейся под атмосферным давлением и свободно протекающей по открытым каналам.

Принцип действия основан на зависимости высоты уровня жидкости в сосуде, в который она свободно втекает от расхода ее через калиброванное щелевое отверстие.

Между объемным расходом Qv3/с) пульпы через профилированное отверстие в емкости и ее уровнем имеется зависимость

где m – коэффициент расхода, зависящий от геометрических размеров щели;
     
b – ширина щели, мм;
    
 g  – ускорение свободного падения. м/с2 
     
Н – уровень воды над водосливом, мм.

На рис. 3 приведена возможная структурная схема щелевого расходомера (а) и профиль щели (б), обеспечивающий линейную зависимость между объемным расходом и уровнем жидкости над водосливом.

Рис. 3. Структурная схема возможного варианта щелевого расходомера

При практической реализации метода измерений по приведенному выше выражению возникают трудности из-за нелинейности этой связи. Для практических измерений всегда удобнее, чтобы связь между и Н была линейной: . Чтобы получить такую связь, про филь щели должен быть построен с использованием выражения

Профиль щели, построенный по вышеприведенному выражению, показан на рис. 3, б. Коэффициент К в выражении (2) рассчитывается по формуле

В соответствии е выражением для ширины щели «в» → при Н→0. Практически линейная зависимость между объемным расходом и уровнем над водосливом сохраняется до уровня 35 мм. Этот участок (10 % от диапазона измерения), как правило, не используют при практической реализации метода.

Расходомеры постоянного перепада давления. В расходомерах этого типа измеряемое вещество (жидкость, газ) проходит непосредственно через расходомер. Измерительная часть расходомера представляет собой вертикальную трубку конической формы, в которой находится поплавок (рис. 6).

Рис. 6. Схема расходомера постоянного перепада давлений

Площадь проходного сечения в расходомере изменяется в зависимости от расхода, а перепад давления остается постоянным. Перепад давления при протекании жидкости через коническую трубку определяется весом поплавка и его геометрической формой. Учитывая, что эти параметры не изменяются в процессе измерения, перепад давлений остается постоянным. При постоянном перепаде давлений площадь кольцевого сечения между внутренними стенками конической трубки и по плавком пропорциональна расходу жидкости, протекающей в данный момент через расходомер.

В конической трубке площадь кольцевого сечения изменяется пропорционально высоте кольца. Следовательно, поплавок изменяет свое положение по высоте в зависимости от расхода вещества:


где
α – коэффициент расхода, зависящий от коэффициента трения жидкости о стенки     трубопровода и поплавка и других факторов;
      
F – площадь кольцевого сечения зазора;
     
Vп – объем поплавка;
     – плотность материала поплавка и вещества, расход которого измеряется;
      
S – площадь поперечного сечения поплавка.

Расходомеры этого типа сравнительно точны. Пределы измерения по воде до 3000 л/ч, по воздуху до 40 м3/ч. Промышленность выпускает расходомеры с пневматическими и электрическими преобразователями.

Измерение расхода твердого продукта с пульпой. В основу метода измерения положена зависимость между расходом твердого и объемным расходом пульпы и ее плотностью:

где  – плотность твердого продукта в пульпе;
      – плотность пульпы;
      – объемный расход пульпы.
Учитывая, что величина  для определенного типа руд постоянна, Можно принять:

.

Имея сигналы об объемном расходе и плотности пульпы, можно рассчитать количество твердого продукта в пульпе. В случае, если объемный расход измеряется щелевым расходомером, когда , расход твердого будет:


.

С учетом этого расходомер твердого может быть реализован следующим образом (рис.7).

Рис. 7. Функциональная структура расходомера твердого в пульпе

В расходомерном баке 1 жестко закреплена пьезометрическая трубка 2, опущенная до уровня нижней кромки профилированной щели. В том же баке находится поплавок 3, связанный рычажной системой с подвижной пьезометрической трубкой 4, которая опущена в емкость 5 с чистой водой с постоянным уровнем. К обеим трубкам подведено давление сжатого воздуха. Давление в трубке 2 пропорционально величине , а в трубке 4 - величине  или Н, т. к. плотность воды = 1. Дифманометр измеряет разность  или
Выходной сигнал дифманометра (например
Метрана – 100 ДД) пропорционален расходу твердого продукта с пульпой.

Измерение расхода сыпучих материалов. Измерение расхода сыпучих материалов - руды, компонентов шихты, концентратов играет важную роль в технологическом контроле на предприятиях горной промышленности. Автоматизация многих технологических процессов (дробление, измельчение, шихтоподготовка и др.) невозможна без автоматического измерения веса и расхода сыпучих материалов. Этот параметр является основным при реализации систем автоматического дозирования реагентов в процессе флотации, информация о переработке руды и количестве полученных концентратов служит основой для расчета различного рода балансов (сменных, суточных и т.д.).

Для измерения расхода сыпучих сред на обогатительных фабриках применяют конвейерные весы. В зависимости от способа получения информации о количестве груза на ленте конвейера различают следующие весоизмерительные устройства:

  •  электромеханические;
  •  гамма-электронные;
  •  тензорезисторные;
  •  электронные.

Конвейерные весы состоят из грузоприемного устройства с преобразователем измеряемого параметра, измерителя скорости или перемещения конвейерной ленты и вторичных приборов, представляющих информацию в необходимом виде (рис. 8).

Рис.8. Структурная схема конвейерных весов

Грузоприемные устройства конвейерных весов представляют собой либо одну роликоопору, либо специальную платформу из 3-х роликоопор.
Для измерения скорости используют индукционные датчики, тахогенераторы.

Расход сыпучего материала определяется из выражения

где – суммарная масса материала, перемещенная конвейером за время Т;
      – мгновенное значение массы, приходящееся на единицу длины ;
      
V – скорость ленты конвейера.

Весы осуществляют измерение расхода руды в пределах от 100 до 2000 т/ч. Погрешность измерения не более + 1 %. Из известных фирм, выпускающих весоизмерительные устройства различного назначения, отметим фирму Шенк (SCHENK), Германия.

PAGE  72


 

А также другие работы, которые могут Вас заинтересовать

63383. Организм и условия его обитания. Экологические факторы и их классификация. Лимитирующие факторы 197 KB
  Живые организмы используют энергию окружающей их среды для поддержания и усиления своей высокой упорядоченности. Живые организмы активно реагируют на состояние окружающей среды и происходящие в ней изменения.
63385. ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИЕ ПРОБЛЕМЫ СОЗДАНИЯ БД 431 KB
  Информационные системы созданные на основе БД характеризуется следующими особенностями: большое количество функций процессов атрибутов данных и сложные взаимосвязи между ними; наличие подсистем имеющих свои задачи и цели функционирования...
63386. Общие условия и противоречия экономического развития 113.5 KB
  Сущность и роль производства в развитии общества. Цель структура факторы производства. Формы общественного производства. Продукт производства.
63387. Учебно-методическое обеспечение курсов информатики. Средства обучения. Кабинет информатики и информационных технологий 59.5 KB
  Рекомендуется, чтобы окна кабинета выходили на северную или северо-восточную сторону горизонта. В противном случае окна необходимо оборудовать устройствами жалюзи светлого цвета для защиты экранов мониторов от прямых солнечных лучей.
63388. ОБСЛЕДОВАНИЕ И ИЗУЧЕНИЕ ИНФОРМАЦИОННЫХ ПОТРЕБНОСТЕЙ ПОЛЬЗОВАТЕЛЕЙ 461 KB
  Выявление факторов способствующих и препятствующих достижению цели Изучение информационных потребностей Анализ запросов пользователей оценка использования информации Определение необходимой информации для различных видов деятельности...
63389. Возникновение экономической мысли. Древний мир. Экономические идеи на Древнем Востоке 100 KB
  Распространение практики наемного труда устанавливались предельные сроки найма и размер денежного вознаграждения за труд. Обосновывается общественное разделение труда что считается основой деления общества на касты.
63390. Понятие популяции. Статические характеристики популяции: численность (плотность) и биомасса популяции, возрастной и половой состав. Пространственное размещение и его характер. Динамические характеристика популяции. Кривые выживания 59 KB
  Виды заселяют эти «островки» своими популяциями. Конечно, биологический вид не похож на сеятеля, засевающего природные участки группами своих особей: просто виды распространены не равномерно...
63391. Частотное объединение и разделение каналов 308.01 KB
  Формирование группового тракта системы с ЧРК При частотном разделении каналов для передачи данных различных источников сообщений используются определенные поддиапазоны частот.