18524

Методы решения ММ БИС во временной области. (динамический анализ)

Лекция

Информатика, кибернетика и программирование

Лекция 4 Методы решения ММ БИС во временной области. динамический анализ Задача Коши Пусть t = ft 1 при условии xa=x0 при . Основное предположение относит...

Русский

2013-07-08

122.5 KB

1 чел.

Лекция  4

Методы решения ММ БИС во временной области.

(динамический анализ)

Задача Коши

Пусть               (t) = f(,t)                                                                                    (1)

при условии x(a)=x0 при .

Основное предположение относительно (1) состоит в том, что удовлетворяет условию Липшеца (в равномерной метрике)

   для всех  и для всех компонент векторов. При этом можно доказать единственность решения задачи.....

Задача интегрирования с начальными условиями носит название задачи Коши.

Для нахождения (t) численными методами интегрирования разделим интервал времени  [a,b] на небольшие приращения. Каждое приращение hк=Dtк называется величиной шага.

Цель численного интегрирования – нахождение  (t) для моментов времени

t1, t2, t3 , ... , tk , где ti+1 =  ti +  hi (hi - шаг интегрирования). Численный метод не позволяет найти точное решение, поэтому обозначим вычисленное значение при t=tk через k. Равенство k=|| (tk) – k|| называют локальной ошибкой при t=tk. Локальная ошибка состоит из двух компонент – методической ошибки и ошибки округления в предположение, что значение х на предыдущем шаге известно точно.

Методическую ошибку называют также алгоритмической, поскольку она зависит от вида численного алгоритма.

Как методическая, так и ошибка округления могут накапливаться с увеличением числа шагов. Поэтому для сравнения точности двух алгоритмов необходимо сравнивать их в одни и те же моменты времени tk при одном и том же начальном состоянии.

Локальная ошибка округления зависит от типа вычислительной машины, т.е. она не может быть уменьшена для данной машины, однако различные методы по разному влияют на ошибку округления. Важно помнить, что общая ошибка округления при t=tk  не равна сумме локальных ошибок округления, возникающих на каждом шаге.

Метод, обладающий свойством уменьшения ошибки округления при увеличении числа шагов, называется численно-устойчивым. В противном случае он численно-неустойчив.

Граница методической ошибки часто обозначается как «О», а сама методическая ошибка как м= О(hp) при h  0.

Таким образом, методическая ошибка стремится к 0 с такой же скоростью, как и hp. Методы классифицируются по критерию «порядок метода  p».

В качестве примера рассмотрим линейный многошаговый метод интегрирования, обобщенное выражение которого основано на представлении дифференциальных уравнений разностными уравнениями вида:

                                (2)

Данное уравнение получено на основе теоремы о среднем.

Теорема о среднем:

                                      (3)

Из общего выражения (2) можно получить формулу явного метода Эйлера (ЯМЭ), задав b0=0; k=1; a1=1; b1=1 .

При этом   - ЯМЭ.                                                               (4)

Подставив в выражение (2) b0=1;   k=1;   a1=1;   b1=0 получим формулу неявного метода Эйлера (НЯМЭ)                           (5)

Подставив в выражение (2) b0=b1=1/2; k=1; a1=1 получим формулу метода трапеций 

 (6)

Оценка локальной методической погрешности ЯМЭ и НЯМЭ

Разложим функцию в ряд Тейлора:

где  t < t < a   при  t < a;

       a< t < t   при  a < t.

Определим погрешность

                                                (7)

где первое слагаемое – это точное значение, а второе - приближенное. Будем считать, что на предыдущем шаге решение точное. Отсюда .

  

Получим формулу локальной методической ошибки для  явного метода Эйлера.

Заменив в формуле .  заменим на производную (см. формулу (1)), получим

xn+1 = xn + h                                                  (8)

    Поскольку при вычислении локальной методической ошибки значение переменной на предыдущем шаге задается точно, перейдем к следующей формуле

xn+1 = x(tn) + h .                                       (9)

Разложим функцию в ряд Тейлора в окрестности точки xn  с точностью до члена второго порядка малости

                                     (10)

где  tn < t < tn+1

      tn+1 – tn = h

Сравнивая выражения (9) и (10) с учетом формулы (7) получим локальную методическую ошибку

                                                   (11)

Заметим, что локальная методическая ошибка eМ довольно велика, поэтому для получения приемлемой точности с помощью явного метода Эйлера необходимо выбирать очень маленькую величину шага.

Аналогично выведем формулу локальной методической ошибки для неявного метода Эйлера.

                                                  (12)

Поскольку при вычислении локальной методической ошибки значение переменной на предыдущем шаге задается точным, перейдем к следующей формуле

                                                  (13)

Разложим функцию в ряд Тейлора в окрестности точки xn+1  с точностью до члена второго порядка малости:

                         (14)

tn < t < tn+1

Отсюда:

                                (15)

Следовательно

                                             (16)

Явный и неявный методы Эйлера можно классифицировать как методы Тэйлора первого порядка.  Локальная методическая ошибка определяется второй производной, следовательно, эти методы имеют низкую точность.

Для повышения точности методов необходимо интегрировать с малой величиной шага. Для оценки локальной методической погрешности требуется определить вторую производную.

Вторую производную можно вычислить, используя теорему о среднем (формула (3)).

Вычисление  второй  производной

Иллюстрируется рисунком 1

Рис. 1. Иллюстрация вычисления второй производной

Если  принять , то выражение для второй производной будет иметь вид:        

                                                  (17)             

Подставив формулу (17) в выражения для локальной методической ошибки ЯМЭ и НЯМЭ:  

      

получим следующее выражение:

                                              (18)

Управление величиной шага интегрирования

  1.  Пусть на n-ом шаге интегрирования величина шага - hn          
  2.  Определяем вектор локальной методической ошибки  Максимальная погрешность

3.   Если emax > eзаданное, то шаг отбрасываем и пытаемся проинтегрировать, уменьшив шаг в два раза

  4.   Если emax  eзаданное , то   hn+1  =   hn ,  если 0.25 eзаданное emax  eзаданное ,

                         hn+1 =   2hn, если   emax   <  0.25 eзаданное.   


 

А также другие работы, которые могут Вас заинтересовать

49951. Вступ до теорії і методики викладання гімнастики 38 KB
  Стройові вправи. Стройові вправи: стройові прийоми шикування пересування Класифікація стройових вправ Стройові вправи класифікуються таким чином: стройові прийоми пересування шикування та перешикування розмикання та змикання див. Місце стройових вправ у загальній структурі уроку і їх значення Стройові вправи є одним із засобів гімнастики; однією із складових фізичного виховання дітей дошкільного віку школярів студентів а також підготовки допризивної молоді та військовослужбовців. Як правило стройові вправи застосовуються у...
49952. Расчет ветровой нагрузки 75 KB
  Эпюра средней скорости ветра и ветровая нагрузка Расчет волновой нагрузки на опорные колонны СПБУ при регулярном волнении Волновая нагрузка преграды с малыми относительно длины волны l размерами поперечного сечения может быть представлена как сумма скоростной Qск и инерционной Qин составляющих: Q = Qин Qск Однако учитывая что вопервых скоростная составляющая Qск при воздействии на форменные решетчатые конструкции является преобладающей т. Qск Qин и вовторых инерционная составляющая Qин во времени действует асинхронно по отношению к...
49954. Законы распределения случайных величин 413 KB
  Функция распределения x b. Функция плотности распределения вероятности: М. Нормальное распределение Плотность распределения: 45.
49955. АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ЭНЕРГИИ БЕТА-СПЕКТРА РАДИОНУКЛИДА 254.5 KB
  Соловьев АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ЭНЕРГИИ БЕТАСПЕКТРА РАДИОНУКЛИДА Практическое руководство Томск 2012 Утверждено ОМС 5 мая 1999г. Определение максимальной энергии бетаспектра радионуклида: Руководство к лабораторной работе. В руководстве рассмотрены методы идентификации радионуклидов с помощью определения максимальной энергии излучения.
49957. Методика навчання стройових вправ 95 KB
  Наприклад термiн Руки вперед припускає що руки повиннi бути прямими долонi всередину пальцi разом. Якщо треба назвати положення яке вiдрiзняється вiд традицiйного слiд його уточнити: Руки вперед долонi вниз пальцi нарiзно. Наприклад: €Шаг правою руки до плечей поворот голови направо€. Наприклад: €œДугами вперед руки в сторониâ.
49958. Вывод в консоль с использованием C# (Csharp) 104.5 KB
  Мы используем WriteLine где нам нужно для того чтобы вывести текст в окно консоли. У WriteLine есть родственница Write: Console.А теперь выведем текст на в новой строке Как видно разница между WriteLine и Write довольно очевидна. Когда вызываешь WriteLine текст автоматически выведется с новой строки.
49959. Создание простейшего триггера на языке PLSQL 238.5 KB
  Задание для самостоятельной работы на лабораторную работу: Сделать всё по методичке, но по своей таблице, выполненной в первой лабораторной работе