18524

Методы решения ММ БИС во временной области. (динамический анализ)

Лекция

Информатика, кибернетика и программирование

Лекция 4 Методы решения ММ БИС во временной области. динамический анализ Задача Коши Пусть t = ft 1 при условии xa=x0 при . Основное предположение относит...

Русский

2013-07-08

122.5 KB

1 чел.

Лекция  4

Методы решения ММ БИС во временной области.

(динамический анализ)

Задача Коши

Пусть               (t) = f(,t)                                                                                    (1)

при условии x(a)=x0 при .

Основное предположение относительно (1) состоит в том, что удовлетворяет условию Липшеца (в равномерной метрике)

   для всех  и для всех компонент векторов. При этом можно доказать единственность решения задачи.....

Задача интегрирования с начальными условиями носит название задачи Коши.

Для нахождения (t) численными методами интегрирования разделим интервал времени  [a,b] на небольшие приращения. Каждое приращение hк=Dtк называется величиной шага.

Цель численного интегрирования – нахождение  (t) для моментов времени

t1, t2, t3 , ... , tk , где ti+1 =  ti +  hi (hi - шаг интегрирования). Численный метод не позволяет найти точное решение, поэтому обозначим вычисленное значение при t=tk через k. Равенство k=|| (tk) – k|| называют локальной ошибкой при t=tk. Локальная ошибка состоит из двух компонент – методической ошибки и ошибки округления в предположение, что значение х на предыдущем шаге известно точно.

Методическую ошибку называют также алгоритмической, поскольку она зависит от вида численного алгоритма.

Как методическая, так и ошибка округления могут накапливаться с увеличением числа шагов. Поэтому для сравнения точности двух алгоритмов необходимо сравнивать их в одни и те же моменты времени tk при одном и том же начальном состоянии.

Локальная ошибка округления зависит от типа вычислительной машины, т.е. она не может быть уменьшена для данной машины, однако различные методы по разному влияют на ошибку округления. Важно помнить, что общая ошибка округления при t=tk  не равна сумме локальных ошибок округления, возникающих на каждом шаге.

Метод, обладающий свойством уменьшения ошибки округления при увеличении числа шагов, называется численно-устойчивым. В противном случае он численно-неустойчив.

Граница методической ошибки часто обозначается как «О», а сама методическая ошибка как м= О(hp) при h  0.

Таким образом, методическая ошибка стремится к 0 с такой же скоростью, как и hp. Методы классифицируются по критерию «порядок метода  p».

В качестве примера рассмотрим линейный многошаговый метод интегрирования, обобщенное выражение которого основано на представлении дифференциальных уравнений разностными уравнениями вида:

                                (2)

Данное уравнение получено на основе теоремы о среднем.

Теорема о среднем:

                                      (3)

Из общего выражения (2) можно получить формулу явного метода Эйлера (ЯМЭ), задав b0=0; k=1; a1=1; b1=1 .

При этом   - ЯМЭ.                                                               (4)

Подставив в выражение (2) b0=1;   k=1;   a1=1;   b1=0 получим формулу неявного метода Эйлера (НЯМЭ)                           (5)

Подставив в выражение (2) b0=b1=1/2; k=1; a1=1 получим формулу метода трапеций 

 (6)

Оценка локальной методической погрешности ЯМЭ и НЯМЭ

Разложим функцию в ряд Тейлора:

где  t < t < a   при  t < a;

       a< t < t   при  a < t.

Определим погрешность

                                                (7)

где первое слагаемое – это точное значение, а второе - приближенное. Будем считать, что на предыдущем шаге решение точное. Отсюда .

  

Получим формулу локальной методической ошибки для  явного метода Эйлера.

Заменив в формуле .  заменим на производную (см. формулу (1)), получим

xn+1 = xn + h                                                  (8)

    Поскольку при вычислении локальной методической ошибки значение переменной на предыдущем шаге задается точно, перейдем к следующей формуле

xn+1 = x(tn) + h .                                       (9)

Разложим функцию в ряд Тейлора в окрестности точки xn  с точностью до члена второго порядка малости

                                     (10)

где  tn < t < tn+1

      tn+1 – tn = h

Сравнивая выражения (9) и (10) с учетом формулы (7) получим локальную методическую ошибку

                                                   (11)

Заметим, что локальная методическая ошибка eМ довольно велика, поэтому для получения приемлемой точности с помощью явного метода Эйлера необходимо выбирать очень маленькую величину шага.

Аналогично выведем формулу локальной методической ошибки для неявного метода Эйлера.

                                                  (12)

Поскольку при вычислении локальной методической ошибки значение переменной на предыдущем шаге задается точным, перейдем к следующей формуле

                                                  (13)

Разложим функцию в ряд Тейлора в окрестности точки xn+1  с точностью до члена второго порядка малости:

                         (14)

tn < t < tn+1

Отсюда:

                                (15)

Следовательно

                                             (16)

Явный и неявный методы Эйлера можно классифицировать как методы Тэйлора первого порядка.  Локальная методическая ошибка определяется второй производной, следовательно, эти методы имеют низкую точность.

Для повышения точности методов необходимо интегрировать с малой величиной шага. Для оценки локальной методической погрешности требуется определить вторую производную.

Вторую производную можно вычислить, используя теорему о среднем (формула (3)).

Вычисление  второй  производной

Иллюстрируется рисунком 1

Рис. 1. Иллюстрация вычисления второй производной

Если  принять , то выражение для второй производной будет иметь вид:        

                                                  (17)             

Подставив формулу (17) в выражения для локальной методической ошибки ЯМЭ и НЯМЭ:  

      

получим следующее выражение:

                                              (18)

Управление величиной шага интегрирования

  1.  Пусть на n-ом шаге интегрирования величина шага - hn          
  2.  Определяем вектор локальной методической ошибки  Максимальная погрешность

3.   Если emax > eзаданное, то шаг отбрасываем и пытаемся проинтегрировать, уменьшив шаг в два раза

  4.   Если emax  eзаданное , то   hn+1  =   hn ,  если 0.25 eзаданное emax  eзаданное ,

                         hn+1 =   2hn, если   emax   <  0.25 eзаданное.   


 

А также другие работы, которые могут Вас заинтересовать

17490. Изучение процесса прокольной прокатки 220.5 KB
  Цель работы: изучить устройство прокатного стана условия захвата заготовки валками; рассчитать основные величины деформации при прокатке; определить опережение и угол захвата. Краткие теоретические сведения Прокатка заключается в обжатии заготовки между вращаю...
17491. Складання комплексного документа в текстовому редакторі Word 979 KB
  ЛАБОРАТОРНА РОБОТА 1 Складання комплексного документа в текстовому редакторі Word Мета роботи: навчитися складати комплексний документ в текстовому редакторі Word: набирати та редагувати текст створювати та змінювати таблиці використовувати таблиці для обчислення дан...
17492. Побудова графіків в редакторі Excel 437.5 KB
  ЛАБОРАТОРНА РОБОТА 2 Побудова графіків в редакторі Excel Мета роботи: навчитися користуватися таблицями для обчислення даних редагувати таблиці створювати графіки на основі таблиць даних прогнозувати дані. Загальні положення побудови графіка за числовими даними
17493. Методи наближеного розв’язання рівнянь в редакторі Excel 364.5 KB
  ЛАБОРАТОРНА РОБОТА 3 Методи наближеного розвязання рівнянь в редакторі Excel Мета роботи: навчитися знаходити корені рівняння за допомогою редактора Excel визначати точність знайденого розвязку. Загальні положення про корені рівняння та точність знайденого розвяз
17494. Використання логічних операторів в редакторі Excel для пошуку рішень 505.5 KB
  ЛАБОРАТОРНА РОБОТА 4 Використання логічних операторів в редакторі Excel для пошуку рішень Мета роботи: навчитися користуватися логічними операторами для пошуку правильних рішень логічних задач. Загальні положення про використання логічних операторів В таблиці 1 н
17495. Розв’язання рівнянь методом ітерацій в MathCAD 520.5 KB
  ЛАБОРАТОРНА РОБОТА 5 Розвязання рівнянь методом ітерацій в MathCAD Мета роботи: навчитися користуватися базовими командами і функціями розвязувати рівняння за допомогою методів хорд і дотичних. Загальні відомості про базові функції MathCAD Рядок меню розміщується у в...
17496. Розв’язання алгебраїчних рівнянь за допомогою вбудованих функцій root та polyroots 191 KB
  ЛАБОРАТОРНА РОБОТА 6 Розвязання алгебраїчних рівнянь за допомогою вбудованих функцій root та polyroots Мета роботи: навчитися користуватися вбудованими функціями розвязувати рівняння за допомогою функцій root та polyroots. Загальні положення розвязання алгебраїчного рівня...
17497. Масиви в MathCAD 777 KB
  ЛАБОРАТОРНА РОБОТА 7 Масиви в MathCAD Мета роботи: навчитися оперувати масивами в MathCAD та розвязувати лінійні рівняння за допомогою матриць. Створення масивів в MathCAD В обчислювальній математиці складені в певному порядку числові дані називаються масивами масивами ан...
17498. Символьні обчислення в MathCAD 407 KB
  ЛАБОРАТОРНА РОБОТА 8 Символьні обчислення в MathCAD Мета роботи: навчитися обчислювати похідні першого та вищих порядків границі розкладати функцію в ряд будувати 3D графіки. Символьне обчислення похідних Для символьних обчислень використовується меню операцій Sy...