18575

УРОВНИ ПРЕДСТАВЛЕНИЯ ДАННЫХ

Доклад

Информатика, кибернетика и программирование

УРОВНИ ПРЕДСТАВЛЕНИЯ ДАННЫХ Существует три уровня представления данных: уровень пользователя предметная область логический и физический. Каждый объект предметной области характеризуется своими атрибутами каждый атрибут имеет имя и значение. Например объект осц

Русский

2013-07-08

117.5 KB

43 чел.

УРОВНИ ПРЕДСТАВЛЕНИЯ ДАННЫХ

Существует три уровня представления данных: уровень пользователя (предметная область), логический и физический.

Каждый объект предметной области характеризуется своими атрибутами, каждый атрибут имеет имя и значение. Например, объект осциллограф. Имена его атрибутов — частота повторения, чувствительность, полоса пропускания; значения атрибутов — соответствующие значения параметров. Или объект транзистор, имена его атрибутов — наименования параметров, значения атрибутов — значения параметров и т. д.

Логический (концептуальный) уровень — это абстрактное представление (абстрактный уровень) данных, независимое от представления в ЭВМ.

Физический уровень — это практическая реализация базы данных на том или ином носителе в ЭВМ. Сюда входят и программные средства управления этими носителями.

Связь между этими тремя уровнями представления данных показана в таблице 1.

Таблица 1.

Предметная область

Логический уровень

Физический уровень

Вся предметная область

Библиотека

База данных

Подмножество объектов предметной области

Запись

Список

Атрибут

имя

Поля

имя поля

Элемент (сегмент)

значение

значение поля

Вся совокупность информации, описывающей один объект предметной области на логическом уровне, называется записьюЗапись полностью характеризует объект и все его атрибуты.

Совокупность записей об одной и той же категории объектов образует файлЗапись состоит из полей, каждое поле соответствует одному из атрибутов. Содержание поля описывает имя и значение соответствующего атрибута.

На физическом уровне каждой записи соответствует одна ячейка — область памяти на том или ином носителе, размер которой должен быть достаточен для хранения записи. Каждому полю, описывающему атрибут объекта, соответствует элемент на конкретном носителе; элемент может быть разделен на сегменты.

Совокупность ячеек образует список, соответствующий одному файлу на логическом уровне. Каждая ячейка имеет ключевое поле; если номера ячеек возрастают, то файл называют ранжированным. Бывают пустые ячейки; тогда список называют неплотным.

Совокупность файлов на логическом уровне называют библиотекой, соответствующей конкретной рассматриваемой предметной области. На физическом уровне библиотеке соответствует база данных.

На логическом уровне данные могут быть представлены тремя способами. В настоящее время существует три модели данных: реляционная, сетевая и иерархическая.

В основу реляционной модели положено понятие теоретико-множественного отношения (реляции), которое представляется в виде таблицы. Она является наиболее удобным инженерным представлением для пользователя (рис. 3а). Каждый столбец ее соответствует атрибуту объекта, и ему присваивается соответствующее имя. В столбцах таблицы (отношения) вводятся значения атрибутов. Используя отношения связи и язык реляционной алгебры, можно осуществлять выбор любого подмножества информации: по строкам, столбцам или другим признакам. Применяя операции "разрезания" и "склеивания" отношений, можно получить разнообразные файлы в нужной форме (рис. 3б).

При использовании реляционной модели атрибут объекта может сам выступать как объект другой предметной области, т.е. задействуется относительность (отсюда — отношение) понятий объекта и его атрибутов.

Иерархическая модель данных — это некоторая их совокупность, состоящая из отдельных деревьев, в которых все связи направлены от одного сегмента, называемого исходным, к нескольким порожденным, т. е. реализуются связи типа "один ко многим" (рис. 4а). Сегмент — это одно или несколько полей, являющихся основной единицей обмена между прикладной программой и языком описания данных. При реализации иерархической системы каждое дерево описывается в виде отдельного файла данных.

Сетевая модель данных является более общей структурой по сравнению с иерархической. Каждый отдельный сегмент (ячейка) может иметь произвольное число непосредственных исходных (старших) сегментов, а также и произвольное число порожденных (младших) (рис. 4б).


Рис. 3.  Пример (а) и общий вид (б) реляционной модели данных

Это обеспечивает представление отношения "многие к многим". Сетевые структуры могут быть описаны с помощью раскрашенных файлов.


Рис. 4.  Иерархическая (а) и сетевая (б) модели данных

Модели данных необходимо сравнивать по следующим показателям: легкость применения для программиста и пользователя, эффективность реализации по объему памяти и времени поиска информации.

Наиболее легка в использовании реляционная модель; сетевая требует от программиста и пользователя понимания типов записей, связей и их отношений. В то же время сетевая и иерархическая модели возникли исторически раньше и реализованы на языках низкого уровня (Ассемблер, Макрокод и др.). Примеры сетевых БД — КОДАСИЛ — ADABAS, Квант и др.; иерархической — IMS.

Реляционные базы данных реализованы на языках высокого уровня и в ряде стран приняты в качестве национального стандарта. К ним относятся ALPHA, QBE, RISS, SEQVEI, dBASE, FRAMEWORK.


 

А также другие работы, которые могут Вас заинтересовать

832. Особенности понятия материя 219.5 KB
  Бытие, как предельно общая абстракция. Формы движения материи. Их качественная специфика и взаимосвязь. Реляционная и субстанциальная концепции пространства и времени. • Качественное многообразие форм пространства-времени в неживой природе. Реляционная и субстанцианальная концепции пространства и времени.
833. Централизованное специализированное предприятие для текущего ремонта автомобилей 363 KB
  План организации рельефа, подсчёт красных и чёрных точек. Объемно-планировочное решение здания. Отделка фасада. Внутренняя отделка помещений. Санитарно-техническое и инженерное оборудование. Колонны каркаса и фахверка.
834. Визначення основних параметрів та режимів роботи валкової жатки 3.57 MB
  Характеристика умов роботи валкової жатки. Існуючі технології схеми валкових жаток. Висота встановлення осі мотовила над різальним апаратом. Винос мотовила відносно різального апарата.
835. Стандартизация свойств. Физические, механические, физико-химические свойства 81.93 KB
  Стандартизация свойств. Марки материалов. Физическое состояние строительных материалов. Свойства материалов по отношению к различным физическим воздействиям. Способность материала поглощать водяные пары из воздуха. Коэффициент линейного температурного расширения (КЛТР).
836. Корреляционная зависимость между реальной заработной платой и безработицей в России с июля 2008-2009 годов 250.5 KB
  Социально-экономическое явление, предполагающее отсутствие работы у людей, составляющих экономически активное население. Влияние реальной заработной платы получаемой россиянами на безработицу в России за промежуток времени равный одному году с июля 2008 года по июнь 2009 года.
837. Использование компьютерной графики в профессиональной деятельности 161.5 KB
  Раскрыть назначение, состав и возможности программ подготовки графических документов на ПЭВМ. Получить представление о принципах графического моделирования для решения идентификационных задач. Назначение, функции, состав и возможности программ подготовки графических документов на ПЭВМ. Графическое моделирование для решения практических задач.
839. Теория культурологии 183 KB
  Основные культурологические теории прошлого и современности. Концепции происхождения и сущности культуры европейских просветителей. Теория культурно-исторических типов Н.Я. Данилевского. Теория культурно-исторических типов и локальных цивилизаций П.А. Сорокина.
840. Системы управления базами данных 95 KB
  Совокупность структурированных данных, относящихся к некоторой предметной области, и хранящаяся в файлах. Физическая и логическая организация данных. Основные понятия реляционной модели данных. Проектирование БД. Понятие информационного объекта.