18703

Оптимальное управление. Вариационное исчисление

Доклад

Менеджмент, консалтинг и предпринимательство

Оптимальное управление это задача проектирования системы обеспечивающей для заданного объекта управления или процесса закон управления или управляющую последовательность воздействий обеспечивающих максимум или минимум заданной совокупности критериев качества...

Русский

2015-01-19

16.22 KB

8 чел.

Оптимальное управление — это задача проектирования системы, обеспечивающей для заданного объекта управления или процесса закон управления или управляющую последовательность воздействий, обеспечивающих максимум или минимум заданной совокупности критериев качества системы .

Для решения задачи оптимального управления строится математическая модель управляемого объекта или процесса, описывающая его поведение с течением времени под влиянием управляющих воздействий и собственного текущего состояния. Математическая модель для задачи оптимального управления включает в себя: формулировку цели управления, выраженную через критерий качества управления; определение дифференциальных или разностных уравнений, описывающих возможные способы движения объекта управления; определение ограничений на используемые ресурсы в виде уравнений или неравенств.

Наиболее широко при проектировании систем управления применяются следующие методы: вариационное исчисление, принцип максимума Понтрягина и динамическое программирование Беллмана.

Иногда (например, при управлении сложными объектами, такими как доменная печь в металлургии или при анализе экономической информации) в исходных данных и знаниях об управляемом объекте при постановке задачи оптимального управления содержится неопределённая или нечёткая информация, которая не может быть обработана традиционными количественными методами. В таких случаях можно использовать алгоритмы оптимального управления на основе математической теории нечётких множеств (Нечёткое управление). Используемые понятия и знания преобразуются в нечёткую форму, определяются нечёткие правила вывода принимаемых решений, затем производится обратное преобразование нечётких принятых решений в физические управляющие переменные.

Вариацио́нное исчисле́ние — это раздел функционального анализа, в котором изучаются вариации функционалов. Самая типичная задача вариационного исчисления состоит в том, чтобы найти функцию, на которой заданный функционал достигает экстремального значения.Методы вариационного исчисления широко применяются в различных областях математики. Например, в дифференциальной геометрии с их помощью ищут геодезические линии и минимальные поверхности. В физике вариационный метод — одно из мощнейших орудий получения уравнений движения (см. например Принцип наименьшего действия), как для дискретных, так и для распределённых систем, в том числе и для физических полей. Методы вариационного исчисления применимы и в статике

Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой (англ.), выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Метод динамического программирования сверху — это простое запоминание результатов решения тех подзадач, которые могут повторно встретиться в дальнейшем. Динамическое программирование снизу включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.

Главный результат теории — всемирно известный “принцип максимума” выдающегося математика Л. С. Понтрягина, сформулированный так: для многих управляемых систем может быть построен такой процесс регулирования, при котором само состояние системы в каждый данный момент подсказывает наилучший с точки зрения всего процесса способ действий.

Если рассматривать самолет как точку, движущуюся в пространстве, то это простой объект. В каждый данный момент можно определить его положение в пространстве: допустим, широту, долготу и высоту над уровнем моря; эти три величины в данном случае его фазовые координаты. Те или иные углы поворота рулей самолета, которыми определяется направление его полета, — управляющие параметры. Совокупность этих параметров (ограниченных определенной областью управления) называется собственно управлением, траектория полета — фазовой траекторией. Задача оптимального управления состоит в том, чтобы выбрать такие из названных величин, которые обеспечат наиболее быстрый прилет самолета на место (впрочем, могут быть и другие критерии, тогда решения задачи будут иными, напр. перелет с наименьшим расходом горючего).

“Принцип максимума” Понтрягина определяет математические условия, необходимые для того, чтобы управление оказалось оптимальным, причем без предварительного определения оптимальной траектории, а путем последовательного регулирования данного процесса.