18800

АЦП / ЦАП. Основные архитектуры, интерфейсы связи

Доклад

Информатика, кибернетика и программирование

АЦП / ЦАП. Основные архитектуры интерфейсы связи. ЦАП предназначен для преобразования числа представленного как правило в виде двоичного кода в напряжение или ток пропорциональные этому числу. Схемотехника аналоговых преобразователей весьма разнообразна. На рисунк...

Русский

2013-07-08

270.15 KB

33 чел.

АЦП / ЦАП. Основные архитектуры, интерфейсы связи.

ЦАП предназначен для преобразования числа, представленного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные этому числу. Схемотехника аналоговых преобразователей весьма разнообразна. На рисунке  представлена общая классификация ЦАП по способам преобразования входного кода и схемам формирования выходного сигнала.

Дальнейшую классификацию ИМС ЦАП можно привести по ряду специфических признаков, например:

1. По роду выходного сигнала: преобразователи с токовым входом или с выходом по напряжению.

2. По типу цифрового интерфейса: с последовательным вводом или с параллельным вводом.

3. По числу ЦАП на кристалле: одноканальные и многоканальные.

4. По быстродействию: низкого, среднего и высокого быстродействия.

5. По разрядности.

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи тех разрядов, значения которых равны 1.

Интерфейсы связи.

Важную часть ЦАП составляет цифровой интерфейс, т.е. схемы, обеспечивающие связь управляющих входов ключей с источниками цифровых сигналов. Структура цифрового интерфейса определяет способ подключения ЦАП к источнику входного кода, например, микропроцессору или микроконтроллеру. Свойства цифрового интерфейса непосредственно влияют и на форму сигнала на выходе ЦАП. Так, в случае параллельного интерфейса неодновременность поступления битов входного слова на управляющие входы ключей преобразователя приводят к появлению узких выбросов, «иголок», в выходном сигнале при смене кода.

ЦАП с последовательным интерфейсом

Такой преобразователь помимо собственно ЦАП содержит на кристалле дополнительно последовательный регистр загрузки, параллельный регистр хранения (буферный регистр) и управляющую логику (см.рисунок 11.21).

При активном уровне сигнала CS (в данном случае нулевом) входное слово длины N (равной разрядности ЦАП) загружается по линии D1 в регистр сдвига под управлением тактовой последовательности CLK. После окончания загрузки, выставив активный уровень на линию LD, входное слово записывают в регистр хранения, выходы которого непосредственно управляют ключами ЦАП. Для того чтобы иметь возможность передавать по одной линии данных входные коды в несколько ЦАП, последний разряд регистра сдвига соединяют с выходом D0 ИМС. Этот вывод подключается к входу D1 следующего ЦАП и т.д. Коды входных слов передаются начиная с кода самого последнего преобразователя в этой цепочке.

ЦАП с параллельным интерфейсом

Наиболее часто используется два варианта. В первом случае, когда разрядность входного кода совпадает с разрядностью ЦАП, на его входы подается все входное слово целиком.

Интерфейс такого ЦАП включает два регистра хранения и систему управления. Два регистра хранения нужны, если пересылка входного кода в ЦАП и установка выходного аналогового сигнала, соответствующая этому коду, должны быть разделены во времени.

Для подключения многоразрядных ЦАП к 8разрядным МП и МК используется второй вариант параллельного интерфейса. Он предусматривает наличие двух параллельных загрузочных регистров для приема младшего байта входного слова МБ и старшего байта – СБ. Пересылка байтов входного слова в загрузочные регистры может происходить в любой последовательности.

Архитектура АЦП

АЦП – устройства, которые принимают входные аналоговые сигналы и генерируют соответствующие им цифровые коды, пригодные для обработки МП и другими цифровыми устройствами.

Принципиально не исключена возможность непосредственного преобразования различных физических величин в цифровую форму, однако эту задачу удается решить лишь в редких случаях изза сложности таких преобразователей. Поэтому в настоящее время наиболее рациональным признается способ преобразования различных по физической природе величин сначала в аналоговые электрические сигналы в виде тока или напряжения с амплитудой, пропорциональной измеряемой величине, а затем с помощью АЦП их переводят в цифровую форму.

Классификация АЦП по методам преобразования.

В основу классификации АЦП положен признак, указывающий на то, как во времени разворачивается процесс преобразования аналоговой величины в цифровую. В основе преобразования выборочных значений сигнала в цифровые эквиваленты лежат операции квантования и кодирования. Они могут осуществляться с помощью либо последовательной, либо параллельной, либо последовательнопараллельной процедур приближения цифрового эквивалента к преобразуемой величине.

Последовательнопараллельные АЦП

Последовательнопараллельные АЦП являются компромиссом между стремлением получить высокое быстродействие и желанием сделать это по возможности меньшей ценой. Последовательнопараллельные АЦП занимают промежуточное положение по разрешающей способности и быстродействию между параллельными АЦП и АЦП последовательного приближения. Последовательнопараллельные АЦП подразделяют на многоступенчатые, конвейерные и многотактные.

АЦП последовательного приближения

Преобразователь последовательного приближения, называемый в литературе также АЦП с поразрядным уравновешиванием, в настоящее время является наиболее распространенным вариантом последовательных АЦП. В основе работы этого класса преобразователей лежит принцип дихотомии, т.е. последовательного сравнения измеряемой величины с 1/2, 1/4, 1/8 и т.д. от ее полной шкалы. Это позволяет для Nразрядного АЦП последовательного приближения выполнить весь процесс преобразования из N последовательных шагов (итераций) вместо 2N-1 при использовании последовательного счета и получить существенный выигрыш в быстродействии.

Интегрирующие АЦП

Недостатком рассмотренных выше последовательных АЦП является низкая помехоустойчивость результатов преобразования. В интегрирующих АЦП во многих случаях получается подавить помеху еще на этапе преобразования. Платой за это является пониженное быстродействие интегрирующий АЦП.

АЦП многотактного интегрирования были изобретены более 40 лет назад и сразу же сталиосновой для цифровых вольтметров высокой точности.

Преобразователи напряжение – частота

На базе преобразователей напряжение – частота (ПНЧ) могут быть построены интегрирующие АЦП, обеспечивающие относительно высокую точность преобразования при низкой стоимости. Существует несколько видов ПНЧ. Наибольшее применение нашли ПНЧ с заданной длительностью выходного импульса.

Интерфейс связи АЦП

Важную часть АЦП составляет цифровой интерфейс, т.е. схемы, обеспечивающие связь АЦП с приемниками цифровых сигналов и правила (протокол) обмена данными. Структура цифрового интерфейса определяет способ подключения АЦП к приемнику выходного кода, например, МП, МК или цифровому процессору сигналов. Свойство цифрового интерфейса непосредственно влияют на уровень верхней границы частоты преобразования АЦП.

Наиболее часто применяют способ связи АЦП с процессором, при котором АЦП является для процессора как бы одной из ячеек памяти. При этом АЦП имеет необходимое число адресных входов, дешифратор адреса и подключается непосредственно к адресной шине и шине данных процессора. Для этого он обязательно должен иметь выходные каскады с тремя состояниями.

Другое требование совместной работы АЦП с МК, называемое программным сопряжением, является общим для любых систем, в которые входят ЭВМ и АЦП. Имеется несколько способов программного сопряжения АЦП с процессорами.

Проверка сигнала состояния

Этот способ состоит в том, что команда начала преобразования «Пуск» периодически подается на АЦП от таймера. Процессор находится в цикле ожидания от АЦП сигнала окончания преобразования «Готов», после которого выходит из цикла, считывает данные с АЦП и в соответствии с ними поступает либо к следующему преобразованию, либо к выполнению основной программы, а затем вновь входит в цикл ожидания. Здесь АЦП выступает в роли ведущего устройства (master), а процессор – ведомого устройства (slave). Этот способ почти не требует дополнительной аппаратуры, но пригоден только в системах, где процессор не слишком загружен, т.е. длительность обработки данных от АЦП значительно меньше времени преобразования АЦП. Указанный способ позволяет максимально использовать производительность АЦП.

Простое прерывание

Выдав команду «Пуск», процессор продолжает работу на основной программе. Послеокончания преобразования формируется сигнал прерывания, который прерывает вычисления в процессоре и включает процедуру поиска периферийного прибора, пославшего сигнал прерывания. Эта процедура состоит в переборе всех периферийных устройств до тех пор, пока не будет найден нужный. Преимущество этого способа по сравнению с предыдущим проявляется в большем числе преобразований за одно и то же время, если используемый АЦП работает медленно.

АЦП с параллельным интерфейсом выходных данных

В простейших случаях, характерных для параллельных АЦП и преобразователей ранних моделей, интерфейс осуществляется с помощью Nразрядного регистра хранения, имеющего три состояния выхода. Здесь Nразрядность АЦП.

На нарастающем фронте сигнала «Пуск» УВХ преобразователя переходит в режим хранения и инициализируется процесс преобразования. Когда преобразование завершено, на выходную линию «Готов» выводится импульс, что указывает на то, что в выходном регистре АЦП находится новый результат. Сигналы «CS» (выбор кристалла) и «RD» (чтение) управляют выводом данных для передачи приемнику.

АЦП с последовательным интерфейсом выходных данных

В АЦП последовательного приближения, оснащенных простейшей цифровой частью, таких, как 12разрядный МАХ176 или 14разрядный МАХ121, выходная величина может быть считана в виде последовательного кода прямо с компаратора или регистра последовательного приближения (РПП).

Здесь приведена схема, реализующая SPIинтерфейс. Процессор является ведущим (master). Он инициирует начало процесса преобразования задним положительным фронтом (срезом) сигнала на входе «Пуск» АЦП. С тактового выхода процессора на синхровход АЦП поступает последовательность тактовых импульсов. Начиная со второго такта после пуска, на выходе данных

АЦП формирует последовательный код выходного слова старшими битами вперед. Этот сигнал поступает на MISO (master input, slave output) вход процессора.

Простейший интерфейс обеспечивает наименьшее время цикла «преобразование передача данных». Однако он обладает двумя существенными недостатками. Во первых, переключение выходных каскадов АЦП во время преобразования привносит импульсную помеху в аналоговую часть преобразователя, что вызывает ухудшение отношения сигнал/шум. Вовторых, если АЦП имеет большое время преобразования, то процессор будет занят приемом информации от него существенную часть вычислительного цикла.


 

А также другие работы, которые могут Вас заинтересовать

26049. Инвертор 13.41 KB
  Единица на выходе схемы И будет тогда и только тогда когда на всех входах будут единицы. Связь между выходом z этой схемы и входами x и y описывается соотношением: z = xy читается как x и y . Когда хотя бы на одном входе схемы ИЛИ будет единица на её выходе также будет единица. Условное обозначение схемы ИЛИ представлено на рис.
26050. Понятие информации в информатике 22.96 KB
  Система представления чисел двоичными цифрами называется двоичной системой счисления. В общем случае позиционной системой счисления называется позиционное представление чисел в котором последовательные цифровые разряды являются целыми степенями целого числа называемого основанием системы. Например в десятичной системе счисления основанием которой является число 10 каждый следующий старший разряд в 10 раз больше предыдущего. Целое число М в позиционной системе счисления с основанием n записывается в виде M=ak ak1a1 a0 где ak ak1a1 a0...
26051. Импульсные и непрерывные электрические сигналы. Характеристики импульсных непрерывных электрических сигналов 14.34 KB
  Импульсные и непрерывные электрические сигналы. Характеристики импульсных непрерывных электрических сигналов Электрические импульсы генерируемые с определённой частотой тактовой частотой управляют всей работой компьютерного процессора побуждая его совершать ряд последовательных операций по обработке информации. Электрические импульсы возникающие в результате природных или техногенных процессов могут приводить к нежелательным результатам. Электрические импульсы различаются по форме виду зависимости тока или напряжения от времени и...
26052. Транзисторно-транзисторная логика ТТЛ) 17.7 KB
  нас RБ достаточный для того чтобы транзистор находился в режиме насыщения. В результате увеличится ток базы VT2 который будет протекать от источника питания через резистор Rб и коллекторный переход VT1 и транзистор VT2 перейдёт в режим насыщения.нас=U0 транзистор VT2 в насыщении. 0 многоэмиттерный транзистор VT1 находится в режиме насыщения а транзистор VT2 закрыт.
26053. Микросхемы ТТЛ с диодами Шотки(ТТЛШ) 13.52 KB
  3 Элементы ТТЛШ С целью увеличения быстродействия элементов ТТЛ в элементах ТТЛШ используются транзисторы Шотки представляющие собой сочетание обычного транзистора и диода Шотки включённого между базой и коллектором транзистора. Поскольку падение напряжения на диоде Шотки в открытом состоянии меньше чем на обычном pnпереходе то большая часть входного тока протекает через диод и только его малая доля втекает в базу. В связи с этим имеет место увеличение быстродействия транзисторного ключа с барьером Шотки в результате уменьшения времени...
26054. Эмитерно-связанная логика(ЭСЛ) 14.42 KB
  Он состоит из двух транзисторов в коллекторную цепь которых включены резисторы нагрузки RК а в цепь эмиттеров обоих транзисторов общий резистор Rэ по величине значительно больший Rк. На вход одного из транзисторов подаётся входной сигнал Uвх а на вход другого опорное напряжение Uоп. Схема симметрична поэтому в исходном состоянии Uвх=Uоп и через оба транзистора протекают одинаковые токи. При увеличении Uвх ток через транзистор VT1 увеличивается возрастает падение напряжения на сопротивлении Rэ транзистор VT2 подзакрывается и ток...
26055. Сравнительный анализ технологий производства микросхем 18.62 KB
  Если этот дефект окажется в критической точке то последующая диффузия примеси может вызвать короткое замыкание перехода и выход из строя всей микросхемы. Одним из эффективных методов визуализации является использование сканирующего электронного микроскопа позволяющего наблюдать топографический и электрический рельеф интегральной микросхемы. Для наблюдения необходимо чтобы поверхность микросхемы была открытой. Такую аппаратуру используют для оценки качества конструкции данной микросхемы...
26056. Регистры. Связь регистров между собой и с другими источниками данных 15.3 KB
  Связь регистров между собой и с другими источниками данных Регистры это функциональные узлы на основе триггеров предназначенные для приёма кратковременного хранения на один или несколько циклов работы данного устройства передачи и преобразования многоразрядной цифровой информации. В зависимости от способа записи информации кода числа различают параллельные последовательные и параллельно последовательные регистры. Появление импульса на тактовом входе регистра сдвига вызывает перемещение записанной в нём информации на один разряд...
26057. Демультиплексоры и дешифраторы 14.69 KB
  Схемы сравнения Цифровые компараторы являются универсальными элементами сравнения которые помимо констатации равенства двух чисел могут установить какое из них больше. Простейшая задача состоит в сравнении двух одноразрядных чисел. Для сравнения многоразрядных чисел используется следующий алгоритм. Устройство обладает свойством наращиваемости разрядности сравниваемых чисел.