18808

Круговороты основных биогенных элементов

Лекция

Экология и защита окружающей среды

Круговороты основных биогенных элементов Глобальный круговорот воды Круговороты воды и СО2 в глобальном масштабе представляют собой вероятно самые важные для человечества биогеохимические круговороты. Для обоих характерны небольшие но весьма подвижные фонды в а...

Русский

2013-07-08

697.5 KB

99 чел.

Круговороты основных биогенных элементов

Глобальный круговорот воды

Круговороты воды и СО2 в глобальном масштабе представляют собой, вероятно, самые важные для человечества биогеохимические круговороты. Для обоих характерны небольшие, но весьма подвижные фонды в атмосфере, высокочувствительные с нарушениям, которые вызываются деятельностью человека и которые могут влиять на погоду и климат.

Несмотря на то, что вода участвует в химических реакциях, из которых слагается и фотосинтез, большая часть потока воды, проходящего через экосистему, связана с испарением, транспирацией (испарение растениями) и выпадением осадков.

Круговорот воды, или гидрологический цикл, как и любой другой круговорот, приводится в движение энергией. Поглощение световой энергии жидкой водой представляет собой главную точку, в которой источник энергии сопряжен с круговоротом воды. По оценкам, около трети всей поступающей на Землю солнечной энергии затрачивается на приведение в движение круговорота воды.

Более 90 % имеющейся на земном шаре воды связано в горных породах, образующих земную кору, и в отложениях (льда и снега) на поверхности Земли. Эта вода вступает в происходящий в экосистеме гидрологический цикл очень редко: лишь при вулканических выбросах водяных паров. Таким образом, большие запасы воды, имеющиеся в земной коре, вносят весьма незначительный вклад в передвижение воды вблизи поверхности Земли, составляя основу резервного фонда этого круговорота.

Фонд воды в атмосфере невелик (составляет около 3%). Вода, содержащаяся в воздухе в виде пара в любой данный момент, соответствует в среднем слою толщиной 2,5 см, равномерно распределенному по поверхности Земли. Количество осадков, выпадающих за год, составляет в среднем 65 см, что в 25 раз больше того количества влаги, которое содержится в атмосфере в любой данный момент. Следовательно, водяные пары, постоянно содержащиеся в атмосфере, так называемый атмосферный фонд, ежегодно совершают круговорот 25 раз. Соответственно время переноса воды в атмосфере равно в среднем двум неделям.

Содержание воды в почве, реках, озерах и океанах в сотни тысяч раз больше, чем в атмосфере. Однако она протекает через оба эти фонда с одинаковой скоростью, поскольку испарение сбалансировано с выпадением осадков. Среднее время переноса воды в ее жидкой фазе по поверхности Земли, равное 3650 годам, в 105 раз больше, чем время ее переноса в атмосфере.

Особое внимание следует обратить на следующие аспекты круговорота воды:

  1.  Море теряет из-за испарения больше воды, чем получает с осадками; на суше ситуация противоположная. Т.о. значительная часть осадков, поддерживающих экосистемы суши, в том числе большинство агроэкосистем, состоит из воды, испаренной из моря.
  2.  Важная, если не главная роль транспирации растений в общей эвапотранспирации (испарении) с суши. Влияние, оказываемое растительностью на движение воды, выявляется лучше всего при удалении растительности. Так экспериментальная вырубка всех деревьев в бассейнах небольших рек увеличивает сток воды в реки, дренирующие расчищенные участки, более чем на 200%. В нормальных условиях этот излишек в виде водяного пара траспирировался бы непосредственно в атмосферу.
  3.  Хотя поверхностный сток пополняет резервуары грунтовых вод и сам пополняется от них, эти величины имеют обратную зависимость. В результате деятельности человека (покрытия земной поверхности непроницаемыми для воды материалами, создания водохранилищ на реках, строительства оросительных систем, уплотнения пахотных земель, сведения лесов и т.д.) сток увеличивается и пополнение столь важного фонда грунтовых вод сокращается. Во многих засушливых районах резервуары грунтовых вод сейчас быстрее выкачиваются человеком, чем пополняются природой.

Биогеохимические циклы углерода, азота и кислорода наиболее совершенны. Благодаря большим атмосферным резервам, они способны к быстрой саморегуляции.

Глобальный круговорот углерода

В круговороте углерода, а точнее – наиболее подвижной его формы – СО2, четко прослеживается трофическая цепь: продуценты, улавливающие углерод из атмосферы при фотосинтезе, консументы – поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуцентов – возвращающих углерод вновь в круговорот. В биологическом круговороте углерода участвуют только органические соединения и диоксид углерода. Весь ассимилированный в процессе фотосинтеза углерод включается в углеводы, а в процессе дыхания углерод, содержащийся в органических соединениях, превращается в диоксид углерода.

Обширные фонды углерода неорганического происхождения - атмосферный диоксид углерода, растворенный диоксид углерода (главным образом в форме HCO3-), угольная кислота и карбонатные отложения - участвуют в круговороте углерода в различной степени . Обмен между углеродом, содержащимся в изверженных породах, отложениях карбоната кальция, каменном угле и нефти, и другими более активными его фондами происходит настолько медленно, что влияние этого углерода на краткосрочное функционирование экосистем незначительно.

В круговороте СО2 атмосферный фонд очень невелик, в сравнении с запасами углерода в океанах, в ископаемом топливе и других резервуарах земной коры. Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы.

В основе этого баланса лежит регулирующая деятельность зеленых растений и поглощающая способность карбонатной системы моря. Когда более 2 млрд. лет назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много СО2 и мало кислорода (а быть может, его не было совсем), и первые организмы были анаэробными. В результате того, что продукция в среднем слегка превосходила дыхание, за геологическое время в атмосфере накопился кислород и уменьшилось содержание СО2. Накоплению кислорода способствовали также геологические и чисто химические процессы, например высвобождение его из оксидов железа или образование восстановленных соединений азота и расщепление воды ультрафиолетовым излучением с выделением кислорода. Низкое содержание СО2 , также как высокие концентрации О2 служат лимитирующими факторами для фотосинтеза: для большинства растений характерно увеличение интенсивности фотосинтеза, если в эксперименте увеличивается содержание CО2 или понижается содержание О2. Таким образом, зеленые растения оказываются весьма чувствительным регулятором содержания этих газов.

Фотосинтезирующий "зеленый пояс" Земли и карбонатная система моря поддерживают постоянный уровень содержания СО2 в атмосфере. Но в последнем столетии стремительно возрастающее потребление горючих ископаемых вместе с уменьшением поглотительной способности "зеленого пояса" начинает превосходить возможности природного контроля, так что содержание СО2 в атмосфере, сейчас постепенно возрастает. Действительно, наибольшим изменениям подвержены потоки веществ на входе и на выходе небольших обменных фондов. Полагают, что в начале промышленной революции (примерно 1800 г.) в атмосфере Земли содержалось около 290 частей СО2 на миллион (0,029 %). В 1958 г., когда были впервые проведены точные измерения, содержание составило 315, а в 1960 г. оно выросло до 335 частей на миллион. Если концентрация вдвое превысит доиндустриальный уровень, что может случишься к середине будущего века, вероятно потепление климата Земли: температура в среднем повысится на 1,5 - 4,5°С, и это наряду с подъемом уровня моря (в результате таяния полярных шапок) и изменением распределения осадков может погубить сельское хозяйство.

Считают, что в следующем веке может установиться новое, но ненадежное равновесие между увеличением содержания СО2 (способствующего разогреву Земли) и усилением загрязнения атмосферы пылью и другими частицами, отражающими излучение и этим охлаждающими планету. Любое значительное результирующее изменение теплового бюджета Земли тогда повлияет на климат.

Основным источником поступления "парникового газа" СО2 считается сжигание горючих ископаемых, однако свой вклад вносят также развитие сельского хозяйства и сведение лесов. Может показаться удивительным, что сельское хозяйство в конечном счете приводит к потере СО2 из почвы (то есть вносит в атмосферу больше, чем забирает оттуда), но дело в том, что фиксация СО2 сельскохозяйственными культурами, многие из которых активны лишь часть года, не компенсирует количества СО2, высвобождающееся из почвы, особенно в результате частой вспашки. Леса - важные накопители углерода, так как в биомассе лесов содержится в 1,5 раза, а в лесном гумусе - в 4 раза больше углерода, чем в атмосфере. Сведение леса, разумеется, может высвободить углерод, накопленный в древесине, особенно если она немедленно сжигается. Уничтожение леса, особенно при последующем использовании этих земель для сельского хозяйства или строительства городов, приводит к окислению гумуса.

Кроме СО2 в атмосфере присутствуют в небольших количествах еще два соединения углерода: оксид углерода (СО)- примерно 0,1 части на миллион и метан (СH4) - около 1,6 части на миллион. Как и СО2 , эти соединения находятся в быстром круговороте и поэтому имеют небольшое время пребывания в атмосфере - около 0,1 года для СО; 3,6 года для СH4 и 4 года для СО2.

И СО, и СH4 образуются при неполном или анаэробном разложении органического вещества; в атмосфере оба окисляются до СО2. Столько же СО , сколько попадает в атмосферу в результате естественного разложения, вносится в нее сейчас при неполном сгорании горючих ископаемых, особенно с выхлопными газами. Накопление монооксида углерода - этого смертельного яда для человека - в глобальном масштабе не представляет собой угрозы, но в городах, где воздух застаивается, повышение концентрации этого газа в атмосфере начинает становиться угрожающим, достигая 100 частей на миллион.

Производство метана - одна из важнейших функций водно-болотистых угодий и мелководных морей мира. Метан, как полагают, имеет полезную функцию: он поддерживает стабильность озонного слоя в верхней атмосфере, который блокирует смертельно опасное ультрафиолетовое излучение Солнца. Биотический  кругооборот   углерода   –   составная   часть   большого кругооборота, он связан с жизнедеятельностью организмов. Скорость оборота СО2 составляет порядка 300 лет (полная замена его в атмосфере).

Круговорот кислорода

Вторым по содержанию в атмосфере после азота является кислород, составляющий 20,95% ее по объему. Гораздо большее его количество находится в связанном состоянии в молекулах воды, в солях, а также в оксидах и других твердых породах земной коры, однако к этому огромному фонду кислорода экосистема не имеет непосредственного доступа. Время переноса кислорода в атмосфере составляет около 2500 лет, если пренебречь обменом кислорода между атмосферой и поверхностными водами. В первичной атмосфере земли содержание О2 было очень низким, однако с появлением фотосинтезирующих организмов он стал важной составляющей атмосферы. На протяжении мн. млн лет концентрация О2 в атмосфере постепенно возрастала, достигнув к наст, времени 21% (по объему). Практически весь О2 был образован в результате фотосинтеза цианобактериями, а впоследствии и зелеными растениями. Удаление кислорода из атмосферы происходит в результате его поглощения живыми организмами при аэробном дыхании, при сжигании ископаемого топлива и при образовании оксидов (окислов). При дыхании и сжигании ископаемого топлива образуется углекислый газ (диоксид углерода, СО2), который вновь используется в фотосинтезе — процессе, приводящем, в свою очередь, к высвобождению кислорода в атмосферу, завершая, таким образом, цикл. Круговорот кислорода в природе аналогичен в основном круговороту углерода в природе.

Биогеохимический цикл азота.

Безусловно, цикл азота — один из самых сложных и одновременно самых уязвимых круговоротов (рис.). Несмотря на большое число участвующих в нем организмов, он обеспечивает быструю циркуляцию азота в различных экосистемах. Как правило, в количественном отношении азот следует за углеродом, вместе с которым он участвует в образовании белковых соединений. Азот, входящий в состав белков и других азотсодержащих соединений, переводится из органической формы в неорганическую в результате деятельности ряда хемотрофных бактерий. Каждый вид бактерий выполняет свою часть работы, окисляя аммоний до нитритов и далее до нитратов. Однако нитраты, доступные для растений, «ускользают» от них в результате деятельности денитрифицирующих бактерий, которые восстанавливают нитраты до молекулярного азота.

Цикл азота характеризуется обширным резервным фондом в атмосфере. Воздух по объему почти на 80 % состоит из молекулярного азота (N2) и представляет собой крупнейший резервуар этого элемента. В то же время недостаточное содержание азота в почве часто лимитирует продуктивность отдельных видов растений и всей экосистемы в целом. Все живые организмы нуждаются в азоте, используя его в различных формах для образования белка и нуклеиновых кислот. Но лишь немногие микроорганизмы могут использовать газообразный азот из атмосферы. К счастью, фиксирующие азот микроорганизмы преобразуют молекулярный азот в доступные растениям ионы аммония. Кроме того, в атмосфере постоянно происходит образование нитратов неорганическим путем, но это явление играет лишь вспомогательную роль по сравнению с деятельностью нитрифицирующих организмов.

Биогеохимические циклы фосфора и серы

Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде.

Круговорот серы и фосфора — типичный осадочный биогеохимический цикл. Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Фосфор

Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот (рис.) он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала — апатита.

Общий круговорот фосфора можно разделить на две части — водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка — морских птиц. Их экскременты (гуано) снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море.

Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин и заключенный в них фосфор снова попадает в осадочные породы.

В наземных экосистемах фосфор извлекают растения из почв и далее он распространяется по трофической сети. Возвращается в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов и их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно.

Последнее обстоятельство может привести к истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). Следовательно, надо стремиться избежать этих потерь и не ожидать того времени, когда Земля вернет на сушу «потерянные отложения».

Сера

Сера также имеет основной резервный фонд в отложениях и почве, но в отличие от фосфора у нее есть резервный фонд и в атмосфере (рис.). В обменном фонде главная роль принадлежит микроорганизмам. Одни из них восстановители, другие — окислители.

В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах — в форме иона (S042~), в газообразной фазе в виде сероводорода (H2S) или сернистого газа (S02). В некоторых организмах сера накапливается в чистом виде (S2) и при их отмирании на дне морей образуются залежи самородной серы.

В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот.

Круговорот серы, хотя ее требуется организмам в небольших количествах, является ключевым в общем процессе продуцирования и разложения (Ю. Одум, 1986). Например, при образовании сульфидов железа фосфор переходит в растворимую форму, доступную для организмов.

В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до H2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы — так продолжается круговорот.

Однако круговорот серы, так же как и азота, может быть нарушен вмешательством человека и виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ (S02t) нарушает процессы фотосинтеза и приводит к гибели растительности.

Биогеохимические циклы легко нарушаются человеком. Так, добывая минеральные удобрения, он загрязняет воду и воздушную среду. В воду попадает фосфор, вызывая эвтрофикацию, образуются азотистые высокотоксичные соединения и др. Иными словами, круговорот становится не циклическим, а ациклическим. Охрана природных ресурсов должна быть, в частности, направлена на то, чтобы ациклические биогеохимические процессы превратить в циклические.

Таким образом, всеобщий гомеостаз биосферы зависит от стабильности биогеохимического круговорота веществ в природе. Но являясь планетарной экосистемой, она состоит из экосистем всех уровней, поэтому первоочередное значение для ее гомеостаза имеют целостность и устойчивость природных экосистем.

7


 

А также другие работы, которые могут Вас заинтересовать

73403. Конфликт в организации: содержание и технология разрешения 219.18 KB
  Руководителям в своей работе приходится часто сталкиваться с конфликтами что ставит их перед необходимостью овладеть умениями и навыками управленческого воздействия на конфликты в организации.
73404. Методика пошуку і усунення пошкождень LCD-телевізора 491.34 KB
  Один з них створив на базі рідких кристалів термодатчик використовуючи їх виборчий відбивний ефект інший вивчав вплив електричного поля на нематичні кристали. Коли були вивчені рідкі речовини довгі молекули яких чутливі до електростатичного та електромагнітного поля...
73405. Анализ и учет себестоимости продукции виноделия на примере АФКСП “Дружба народов” Красногвардейского района АР Крым 468.5 KB
  Закладка новых виноградных насаждений и увеличение валового сбора за счет этого а затем наращивание объёмов производства конечной продукции должны регламентироваться исключительно спросом на продукцию отрасли и систематически отслеживаться созданными на предприятии спецслужбами маркетинга.
73406. Понятие стиля 27 KB
  По названию они связываются с различными географическими областями греческого мира: Аттический стиль в этом стиле писали древние авторы; его основа –- это ясность и простота Азиатский основа стиля заключается в пышности неумеренности использования фигур...
73407. Категории литературного рода и жанра 74.5 KB
  Прозаические жанры находились на периферии человеческого сознания. Задачей становится соотнести жанры с родами литературы. Жанры – типы литературного произведения которые складываются исторически в разных литературных традициях. В западной литературе жанры чрезвычайно близки друг к другу.
73408. Драматическое произведение 28 KB
  Трагедия и комедия уходят в прошлое а остается просто драма которая не подчиняется строгим жанровым требованиям. Мы приходим к свободным родовым формам вместо системы жанров: эпос лирика и драма.
73409. Проблема времени и пространства в драме 36 KB
  Декорации воспроизводящие место действия появляются в реалистическом театре. В Восточном театре существовала пластическая декорация. В Восточном театре сцена была пустой но присутствовали словесные и пластические декорации изображалось то чего нет на сцене с помощью жестов походки...
73410. Особенности драматического сюжета 38 KB
  Экспозиция в повествовательном произведении –- представление того что произошло до начала действия. Это происходит по ходу действия. Рассеянная экспозиция -– это когда обстоятельства существующие для пониманию действия раскрываются в беседах мыслях персонажей может быть обрисована одним персонажем.
73411. Лирическое произведение. Особенности его структуры 30.5 KB
  Поэзия, которая пелась под лиру – лирика. Лирика как термин утверждается на рубеже 18-19 вв. Выделение лирики оформляли немецкие философы, прежде всего Гегель. Говорил о лирике и Аристотель, но термина этого не употреблял.