18809

Биогеохимические циклы

Доклад

Экология и защита окружающей среды

Ввиду того что растения и животные могут использовать только те биогенные элементы которые находятся на поверхности Земли или вблизи нее для сохранения жизни необходимо чтобы материалы ассимилированные какимилибо организмами в конечном счете становились доступным...

Русский

2013-07-08

49 KB

24 чел.

Ввиду того, что растения и животные могут использовать только те биогенные элементы, которые находятся на поверхности Земли или вблизи нее, для сохранения жизни необходимо, чтобы материалы, ассимилированные какими-либо организмами, в конечном счете становились доступными другим организмам. Единственный механизм, способный обеспечить подобную преемственность - это механизм циркуляции элементов протоплазмы из внешней среды в организмы и опять во внешнюю среду. То есть биогенные элементы в отличие от энергии должны удерживаться в экосистеме, где они совершают непрерывный круговорот, в котором участвуют как живые организмы, так и физическая среда.

Известно, что из 90 с лишним элементов, встречающихся в природе 30-40 требуются живым организмам; некоторые элементы, такие, как углерод, водород, кислород и азот необходимы организмам в больших количествах, другие - в малых или даже в ничтожных количествах.

Какова бы ни была потребность в них, жизненно важные для организмов элементы участвуют в круговоротах. Элементы, не имеющие столь существенного значения, хотя и не так тесно связаны с организмами, но также участвуют в циклическом движении. Часто они движутся теми же путями, что и незаменимые элементы, из-за своего химического родства с последними.

Эти в большей или меньшей степени замкнутые пути получили название биогеохимических циклов – биогеохимический круговорот, представляющий собой обмен макро- и микроэлементов и простых неорганических веществ (СО2, Н2О) с веществом атмосферы, гидросферы, литосферы. Суть цикла в следующем: химический элементы, поглощенные организмом, впоследствии его покидают, уходят в абиотическую среду, затем, через какое-то время, снова попадают в живой организм и т.д. Название четко отражает суть того, что обмен веществ осуществляется между живыми и неживыми компонентами биосферы.

В природе элементы никогда, или почти никогда не распределены равномерно по всей экосистеме и не находятся всюду в одной и той же химической форме.

Например, кислород содержится в атмосфере в газообразной форме - в виде молекулярного кислорода (О2) и в виде диоксида углерода (СО2); в воде кислород содержится в растворенном виде, но, кроме того, он в соединении с водородом входит в состав самой воды (Н2О). В литосфере кислород встречается в форме оксидов (Fе2О3 и др.) и солей (главным образом в виде CаСО3). Скорость перехода элемента из одного неорганического соединения в другое и его доступность в неорганической форме живым организмам сильно варьируют. Самый большой фонд кислорода, в который входит свыше 90% всего кислорода, находящегося у поверхности Земли, - это карбонат кальция осадочных пород, в частности известняков; за исключением небольших количеств, освобождаемых в результате вулканической деятельности, кислород, входящий в состав известняков и других осадочных пород, совершенно недоступен живым организмам. В отличие от кислорода азот встречается, главным образом, в газообразной форме (N2) в атмосфере, однако растения ассимилируют азот в основном из нитратов (NO3-), содержащихся в почве или в воде. Несмотря на свое обилие, атмосферный азот играет незначительную роль в круговороте питательных веществ.

Таким образом, в каждом круговороте удобно различать две части, или два "фонда":

1) Резервный фонд - большая масса медленно движущихся веществ, в основном небиологический компонент, то есть та часть круговорота, которая физически или химически отделена от организмов;

2) Подвижный (или обменный фонд) - меньший, но более активный, для которого характерен быстрый обмен между организмами и их непосредственным окружением.

Иногда резервный фонд называют "недоступным" фондом, а активный, циркулирующий фонд - доступным или обменным. Такие термины допустимы, если только не понимать их слишком буквально. Любой атом, находящийся в резервном фонде не обязательно все время недоступен для организмов, так как между доступным и недоступным фондами существует постоянный медленный обмен.

Если же рассматривать биосферу в целом, то в ней можно выделить: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре (в геологическом круговороте).

Экосистему удобно представить в виде ряда блоков, через которые проходят различные материалы и в которых эти материалы могут оставаться на протяжении различных периодов времени.

Рис. Блочная модель экосистемы с указанием некоторых наиболее важных путей обмена минеральных веществ.


В круговоротах минеральных веществ в экосистеме в большинстве случаев участвуют три активных блока:

1. живые организмы

2.  мертвый органический детрит

3. доступные неорганические вещества.

Два добавочных (резервных) блока – 4. косвенно доступные неорганические вещества и     5. осаждающиеся органические вещества - связаны с круговоротами биогенных элементов в каких-либо периферических участках, однако обмен между этими блоками и остальной экосистемой замедлен по сравнению с обменом, происходящим между активными блоками.

Процессы, обеспечивающие перенос биогенных элементов в пределах экосистемы, представлены на рисунке: ассимиляция и создание продукции сопровождаются переходом минеральных веществ из неорганического блока в органический: в круговороте углерода, кислорода, азота, фосфора и серы самым главным компонентом этого этапа является первичная продукция, создаваемая растениями; однако животным необходимы, кроме того, многие другие важные элементы, такие, как натрий, калий и кальций, и они ассимилируют эти элементы непосредственно из воды, которую пьют.

Некоторая часть углерода и кислорода возвращается в результате дыхания непосредственно в фонд доступных неорганических питательных веществ, возможно, после многократных круговоротов в пределах блока живой биомассы по хищным пищевым цепям.

Кальций, натрий и ионы других минеральных веществ выделяются или вымываются из листьев дождем или водой, окружающей водные организмы, и тоже быстро вновь вступают в круговорот. Большая часть углерода и азота, включившихся в процессе ассимиляции в живую биомассу, после гибели организмов, а также в результате экскреции переносится в детритный блок. Некоторые биогенные элементы, содержащиеся в детрите, могут быть возвращены в блок биомассы детритоядными организмами, но все они в конечном счете в результате вымывания и разложения вновь попадают в фонд доступных неорганических веществ. Обмен между фондами активно участвующих в круговороте минеральных веществ и огромными резервуарами косвенно доступных биогенных элементов, заключенных в атмосфере, известняках, каменном угле и в образующих земную кору горных породах, происходит медленно, главным образом, в результате геологических процессов.

Процессы ассимиляции и распада, благодаря которым происходят круговороты биогенных элементов в биосфере, тесно связаны с поглощением и высвобождением энергии организмами. Наиболее тесно связан с превращениями энергии в сообществе круговорот углерода, так как большая часть энергии, ассимилированной в процессе фотосинтеза, содержится в органических углеродсодержащих соединениях. В большинстве процессов, сопровождающихся выделением энергии, среди которых самым главным является дыхание, углерод высвобождается в виде диоксида углерода. Когда в организме происходит метаболизм органических соединений, содержащих азот, фосфор и серу, эти элементы нередко удерживаются в нем, поскольку они необходимы для синтеза структурных белков, ферментов и других органических молекул, образующих структурные и функциональные компоненты живых тканей. Поэтому прохождение азота, фосфора и серы через каждый трофический уровень несколько замедленно по сравнению со средним временем переноса энергии.

При оценке влияния деятельности человека на биогеохимические циклы важны сравнительные объемы резервных фондов. Как правило, изменениям подвержены, в первую очередь, наиболее малообъемные и малоподвижные фонды.

Разделение биогеохимических циклов на круговороты газообразных веществ и осадочные циклы основано на том, что некоторые круговороты, например, те, в которых участвуют углерод, азот или кислород, благодаря наличию крупных атмосферных или океанических (или же и тех и других) фондов довольно быстро компенсируют различные нарушения. Например, избыток СО2, накопившийся в каком-либо месте в связи с усиленным окислением или горением, обычно быстро рассеивается воздушными потоками; кроме того, усиленное образование СО2 компенсируется усиленным его потреблением растениями и превращением в карбонаты в море. Круговороты газообразных веществ с их большими атмосферными фондами можно считать в глобальном масштабе "хорошо забуференными", поскольку их способность приспосабливаться к изменением велика. Но способность к саморегуляции даже при таком большом резервном фонде, каким является атмосфера, имеет свои пределы. Осадочные циклы, в которых участвуют такие элементы, как фосфор и железо, обычно гораздо менее подвержены самоконтролю и легче нарушаются в результате местных пертурбаций, потому, что в этих случаях основная масса вещества сосредоточена в относительно малоактивном и малоподвижном резервном фонде в земной коре. Следовательно, если "спуск" совершается быстрее, чем обратный "подъем", то какая-то часть обменного материала на длительное время выбывает из круговорота; механизмы, обеспечивающие возвращение в круговорот, во многих случаях основаны, главным образом, на биологических процессах.

Человек уникален не только тем, что в своей деятельности он использует почти все имеющиеся в природе элементы, а также ряд новых, искусственно им созданных. Он так ускоряет движение многих веществ, что круговороты становятся несовершенными или процесс теряет цикличность и складывается противоестественная ситуация: в одних местах возникает недостаток, а в других - избыток каких-то веществ. В этой связи первоочередная задача - количественное изучение биогеохимических циклов.


 

А также другие работы, которые могут Вас заинтересовать

13285. Навыки работы с программным пакетом Electronics Workbench (EWB) для виртуального моделирования физических измерительных процессов 89.5 KB
  Лабораторная работа №1 Навыки работы с программным пакетом Electronics Workbench EWB для виртуального моделирования физических измерительных процессов. Цель исследования: Получить начальное представление о базовых возможностях программного пакета EWB необходимых для мод...
13286. Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench 380.5 KB
  Лабораторная работа №2 Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench Цель исследования: Моделирование работы биполярного транзистора в среде Electronics Workbench и виртуальные измерения его входной и выходной вольтамперных характер
13287. Виртуальные измерения магнитной индукции на основе эффекта Холла в среде Electronics Workbench 333.5 KB
  Лабораторная работа №3 Виртуальные измерения магнитной индукции на основе эффекта Холла в среде Electronics Workbench Цель исследования: Моделирование работы датчика Холла в среде Electronics Workbench и виртуальные измерения с его помощью магнитной индукции. Задание на...
13288. Моделирование работы пироэлектрического датчика в среде Electronics Workbench 367 KB
  Лабораторная работа №4 Моделирование работы пироэлектрического датчика в среде Electronics Workbench Цель исследования: Моделирование работы пироэлектрического датчика в среде Electronics Workbench и виртуальные измерения внешнего теплового потока заданного периодической пос
13289. Hands-On Lab Debugging Applications in Windows Azure 818.61 KB
  HandsOn Lab Debugging Applications in Windows Azure Contents Overview3 Exercise 1: Debugging an Application in the Cloud5 Task 1 Exploring the Fabrikam Insurance Application5 Task 2 Running the Application as a Windows Azure Project7 Task 3 Adding Tracing Support to the Application14 Task 4 Creating a Log Viewer Tool25 Verification33 Summary38 Overview Using Visual Studio you can debug applications in your local ...
13290. Автоматизация создания документов с помощью Visual Basic .NET 101.5 KB
  6. ЛАБОРАТОРНАЯ РАБОТА Автоматизация создания документов с помощью Visual Basic .NET 6.1. Цель работы: приобретение практических навыков автоматизации создания документов с помощью Visual Basic с использованием инструментальных средств интегрированной среды разработки Vis...
13291. ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ 1.46 MB
  МЕТОДИЧНІ ВКАЗІВКИ до лабораторних робіт з дисципліни ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ Методичні вказівки до лабораторних робіт з дисципліни Технології програмування для студентів напрямів 6.040302 Інформатика 6.040301 Прикладна математика / Упоряд. Кобилін О.А. Маш...
13292. ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ. МЕТОДИЧНІ ВКАЗІВКИ ДО КУРСОВОГО ПРОЕКТУВАННЯ 666 KB
  МЕТОДИЧНІ ВКАЗІВКИ ДО КУРСОВОГО ПРОЕКТУВАННЯ З ДИСЦИПЛІНИ ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ Методичні вказівки до курсового проектування з дисципліни Технології програмування для студентів напряму 6.040302 Інформатика /Упоряд.: Кобилін О.А. Руденко Д.О. Харкiв: ХНУРЕ ...
13293. Лабораторный практикум по механизации животноводства для студентов сельскохозяйственных высших учебных заведений инженерных специальностей 8.35 MB
  Лабораторный практикум по механизации животноводства для студентов сельскохозяйственных высших учебных заведений инженерных специальностей / В.К. Полянин В.Я. Спевак Р.А. Денисов Романов В книге рассмотрены устройство принцип действия техническое обслуживание р