18814

Биогеохимические циклы. Круговорот веществ в природе

Лекция

Экология и защита окружающей среды

Тема: Биогеохимические циклы. План лекции Круговорот веществ в природе Биогеохимические циклы наиболее жизненно важных биогенных веществ Весь лик Земли: все ее ландшафты атмосфера химический состав вод все это обязано своим происхождением прежд

Русский

2013-07-08

53 KB

78 чел.

Тема:  Биогеохимические циклы.

План лекции

  1.  Круговорот веществ в природе

Биогеохимические циклы наиболее жизненно важных биогенных веществ

  1.  Весь лик Земли: все ее ландшафты, атмосфера, химический состав вод – все это обязано своим происхождением прежде всегo жизни.

В биосфере в результате жизнедеятельности микроорганизмов в больших масштабах осуществляются такие химические процессы, как окисление и восстановление элементов с переменной валентностью (азот, сера, железо, марганец и др.). Микроорганизмы-окислители могут быть как автотрофами, так и гетеротрофами.

Это бактерии, окисляющие сероводород и серу, нитри- и нитрофицирующие микроорганизмы, железные и марганцевые бактерии, концентрирующие эти металлы в своих клетках. В результате образуются осадочные месторождения серы, залежи сульфидов металлов,  железные и железомарганцевые руды.

За счет жизнедеятельности огромного числа гетеротрофов, в основном грибов, животных и микроорганизмов, происходит гигантская в масштабах всей Земли работа по разложению органических остатков

Природные воды, обогащенные этими продуктами минерализации, становятся химически высокоактивными и разрушают горные породы.

Процесс разложения органических веществ, при котором освобождается химическая энергия, характерен для всех частей биосферы, где есть живые организмы. Часть органического вещества, попадающего в условия, неблагоприятные для деятельности деструкторов, захоранивается и консервируется в составе осадочных пород, поэтому синтез органических веществ в масштабе всей биосферы неполностью уравновешивается их разложением.

Основных круговоротов веществ в природе два: большой (геологический) и малый (биогеохимический).

Большой круговорот веществ в природе (геологический) обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли.

Осадочные горные породы, образованные за счет выветривания магматических пород, в подвижных зонах земной коры вновь погружаются в зону высоких температур и давлений. Там они переплавляются и образуют магму – источник новых магматических пород. После поднятия этих пород на земную поверхность и действия процессов выветривания вновь происходит трансформация их в новые осадочные породы. Символом круговорота веществ является спираль, а не круг. Это означает, что новый цикл круговорота не повторяет в точности старый, а вносит что-то новое, что со временем приводит к весьма значительным изменениям.

Большой круговоротэто и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности Мирового океана (на что затрачивается почти половина поступающей к поверхности Земли солнечной энергии), переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает на ту же водную поверхность океана.

Подсчитано, что в круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды.

Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле, весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Малый круговорот веществ в биосфере (биогеохимический), в отличие от большого, совершается лишь в пределах биосферы. Сущность его в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения.

Этот круговорот для жизни биосферы – главный, и он сам является порождением жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на нашей планете, обеспечивая биогеохимический круговорот веществ.

Главным источником энергии круговорота является солнечная радиация, которая используется в фотосинтезе. Эта энергия довольно неравномерно распределяется по поверхности земного шара. Например, на экваторе количество тепла, приходящееся на единицу площади, в три раза больше, чем на архипелаге Шпицберген (80° с. ш.). Кроме того, она теряется путем отражения, поглощается почвой, расходуется на транспирацию воды и т. д. а на фотосинтез тратится не более 5% от всей энергии, но чаще всего 2—3%.

В ряде экосистем перенос вещества и энергии осуществляется преимущественно посредством трофических цепей. Такой круговорот обычно называют биологическим. Он предполагает замкнутый цикл веществ, многократно используемый трофической целью.  

Однако в масштабах всей биосферы такой круговорот невозможен. Здесь действует биогеохимический круговорот, представляющий собой обмен макро- и микроэлементов и простых неорганических веществ (СО2, Н2О) с веществом атмосферы, гидросферы и литосферы.

Круговорот отдельных веществ В. И. Вернадский назвал биогеохимическими циклами. Суть цикла в следующем: химические элементы, поглощенные организмом, впоследствии его покидают, уходя в абиотическую среду, затем, через какое-то время, снова попадают в живой организм и т. д. Этими циклами и круговоротом в целом обеспечиваются важнейшие функции живого вещества в биосфере.

2. Биогеохимические циклы наиболее жизненно важных биогенных веществ

Наиболее жизненно важными можно считать вещества, из которых в основном состоят белковые молекулы. К ним относятся углерод, азот, кислород, фосфор, сера.

Биогеохимические циклы углерода, азота и кислорода наиболее совершенны. Благодаря большим атмосферным резервам, они способны к быстрой саморегуляции. В круговороте углерода, а точнее – наиболее подвижной его формы – СО2, четко прослеживается трофическая цепь: продуценты, улавливающие углерод из атмосферы при фотосинтезе, консументы – поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуцентов – возвращающих углерод вновь в круговорот.  

Скорость оборота СО2 составляет порядка 300 лет (полная его замена в атмосфере) (рис.2).

В Мировом океане трофическая цепь: продуценты (фитопланктон) – консументы (зоопланктон, рыбы) – редуценты (микроорганизмы) – осложняется тем, что некоторая часть углерода мертвых организмов, опускаясь на дно, «уходит» в осадочные породы и участвует уже не в биологическом, а в геологическом круговороте вещества.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд т этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот этого элемента приводит к возрастанию содержания СО2 в атмосфере.

Скорость круговорота кислорода — 2 тыс. лет, именно за это время весь кислород атмосферы проходит через живое вещество. Основной поставщик кислорода на Земле — зеленые растения. Ежегодно они производят на суше 53 ·109 т кислорода, а в океанах — 414 · 109 т.

Главный потребитель кислорода – животные, почвенные организмы и растения, использующие его в процессе дыхания. Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.

Подсчитано, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который освобождается в процессе фотосинтеза.

Отдельные высоко развитые страны расходуют кислорода больше, чем производится его растениями на их территории.

Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их.

Опасность заключается также и в том, что азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям.

Азот возвращается в атмосферу вновь с выделенными при гниении газами. Роль бактерий в цикле азота такова, что если будет уничтожено только двенадцать их видов, участвующих в круговороте азота, жизнь на Земле прекратится.

Биогеохимический круговорот в биосфере, помимо кислорода, углерода и азота, совершают и многие другие элементы, входящие в состав органических веществ, — сера, фосфор, железо и др.

Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде.

Круговорот серы и фосфора — типичный осадочный биогеохимический цикл. Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Фосфор содержится в горных породах, образовавшихся в .прошлые геологические эпохи. В биогеохимический круговорот он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания.

Общий круговорот фосфора можно разделить на две части – водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка – морских птиц. Их экскременты снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море.

Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин и заключенный в них фосфор снова попадает в осадочные породы.

В наземных экосистемах фосфор извлекают растения из почв и далее он распространяется по трофической сети. Возвращается в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов и их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно.

Сера также имеет основной резервный фонд в отложениях и почве, но в отличие от фосфора имеет резервный фонд и в атмосфере. В обменном фонде главная роль принадлежит микроорганизмам. Одни из них восстановители, другие – окислители.

В горных породах сера встречается в виде сульфидов (FeS и др.), в растворах – в форме иона (SO42-), в газообразной фазе в виде сероводорода (H2S) или сернистого газа (SO2). В некоторых организмах сера накапливается в чистом виде (S2) и при их отмирании на дне морей образуются залежи самородной серы.

В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот.

Круговорот серы, хотя ее требуется организмам в небольших количествах, является ключевым в общем процессе продукции и разложения. Например, при образовании сульфидов железа (FeS), фосфор переходит в растворимую форму, доступную для организмов.

В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до H2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы — так продолжается круговорот.

Однако круговорот серы, так же как и азота, может быть нарушен вмешательством человека. Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ (SO2) нарушает процессы фотосинтеза и приводит к гибели растительности.

Биогеохимические циклы легко нарушаются человеком. Так, добывая минеральные удобрения, он загрязняет воду и воздушную среду. В воду попадает фосфор, вызывая эвтрофикацию, азотистые высокотоксичные соединения и др. Иными словами, круговорот становится не циклическим, а ациклическим. Охрана природных ресурсов должна быть, в частности, направлена на то, чтобы ациклические биогеохимические процессы превратить в циклические.

Таким образом, всеобщий гомеостаз биосферы зависит от стабильности биогеохимического круговорота веществ в природе. Но являясь планетарной экосистемой, биосфера состоит из экосистем всех уровней, поэтому первоочередное значение для ее гомеостаза имеют целостность и устойчивость природных экосистем.


 

А также другие работы, которые могут Вас заинтересовать

70680. Комплексное исследование рынка 104.5 KB
  Изучение товара: новизна и конкурентоспособность по сравнению с товарами конкурентов; соответствие требованиям местного законодательства существующих здесь правил и обычаев; способность удовлетворить нынешние и перспективные потребности потенциальных покупателей...
70684. Способы проведения полимеризации 251.5 KB
  Полимеризация экзотермический процесс и это необходимо помнить при ее осуществлении. Таким образом свободная атака мономера при инициировании полимеризации экзотермический процесс в то время как разложение инициатора эндотермический.
70686. Поликонденсация 2.79 MB
  Поликонденсацией называют реакцию образования высокомолекулярных веществ, в результате конденсации многих молекул, сопровождающейся выделением простых веществ (воды, спирта, углекислого газа, хлористого водорода и т. д.).
70687. Введение в технологию синтеза полимерных материалов. Термины и определения 566.14 KB
  Возможны два варианта дозирования: на всасывание компрессора промежуточного давления при давлении 12 МПа или на всасывание компрессора реакционного давления при давлении 2530 МПа. Принципиальная схема дозирования кислорода на всасывание компрессора промежуточного давления...
70688. Классификация оборудования для синтеза полимеров 528.67 KB
  В промышленности чаще всего используют электрический привод в некоторых случаях можно применять паровой и гидравлический. приведен привод типа А соединение вала мешалки с валом редуктора продольно-разъемной муфтой.