1893

Особенности синтеза многоуровневых схем. Методы вынесения за скобки и допустимых конфигураций

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Многоуровневая реализация на основе скобочных форм. Особенности синтеза многоуровневых схем методом допустимых конфигураций (д.к.).

Русский

2013-01-06

26.87 KB

6 чел.

Особенности синтеза многоуровневых схем. Методы вынесения за скобки и допустимых конфигураций.

Известно, что элементы этого класса образуют полный функциональный базис, т.е. любая КС может быть построена только на этих элементах. Сами элементы И-НЕ легко реализуются с использованием интегральной технологии, микросхема может содержать несколько вентилей И-НЕ. В структурном плане каждый вентиль состоит из последовательно соединённых схем И и инвертора, причём выходной каскад усиливает и формирует сигнал, что позволяет подавать выход одного элемента И-НЕ на входы других, наращивая глубину КС практически без ограничений.

Для реализации булевой функции на элементах И-НЕ удобно представить её в д.н.ф.:y=k1 \/ k2 \/…\/ km, где ki – простая конъюнкция, i = 1,2,…,m. Затем д.н.ф. дважды инвертируется по закону де’Моргана:

Естественно что нет необходимости всякий раз при реализации булевой функции дважды инвертировать и преобразовывать д.н.ф.. Справедливо следующее правило: для реализации б.ф. на элементах И-НЕ достаточно по д.н.ф. построить двухярусную реализацию на элементах И и ИЛИ и затем все вентили (И и ИЛИ) заменить вентилями И-НЕ. Если некоторая конъюнкция в д.н.ф. состоит из одной буквы, то на выходной вентиль подаётся входная переменная и знак инверсии над этой переменной меняется на противоположный. Если входные переменные представлены не парафазным кодом, т.е. только прямыми значениями, то схема дополняется ярусом инверторов и таким образом становиться трех ярусной.

Многоуровневая реализация на основе скобочных форм.

Определённого сокращения можно достичь, если при реализации б.ф. перейти от д.н.ф. к скобочным формам. Рассмотрим только такие скобочные формы, которые получаются из д.н.ф. путём объединения нескольких конъюнкций в скобки с вынесением за скобки общего множителя, состоящего из одной или нескольких переменных. В этом случае каждая конъюнкция, входящая в дизъюнкцию, будет содержать в числе сомножителей не более одной дизъюнкции. В свою очередь любая дизъюнкция, являющаяся сомножителем, может быть также преобразована в скобочную форму и таким образом б.ф. оказывается представленной в виде вложенных друг в друга выражений, заключённых в скобки.

Пример:

y=x1x2x3~x4x6 \/ x2x3x5x6 \/ x1~x2~x3x5x6 \/ ~x2~x3~x4x6 \/ x4x5~x6 \/ x3x4x5

y=x6(x2x3(x1~x4 \/ x5) \/ ~x2~x3 (x1x5 \/ ~x4)) \/ x4x5(~x6 \/ x3)

Если б.ф. представлена в скобочной форме, то соответствующая ей реализация на элементах И-НЕ получается путём многократного применения того же приёма двойного инвертирования исходной дизъюнкции с последующим преобразованием полученного выражения по закону де’Моргана. Удобно обозначить каждую дизъюнкцию, входящую в скобочную форму, некоторой промежуточной переменной и для реализации этой дизъюнкции применить описанный выше приём.

Пример:

v1=x1~x4 \/ x5, v2=x1x5 \/ ~x4, v3=x2x3v1 \/ ~x2~x3v2, v4=~x6 \/ x3, y=x6v3 \/ x4x5v4

Ясно, что переход от д.н.ф. к скобочной форме не однозначен и что различным скобочным формам соответствуют схемы различной сложности. При оценке эффективности вынесения символов за скобки по критерию уменьшения суммарного числа входов вентилей И-НЕ необходимо руководствоваться правилом: если в дизъюнктивной форме объединить в скобки k слагаемых с вынесением за скобки общего множителя, содержащего r переменных, то это приведёт к сокращению G суммарного числа входов в КС.

G = r ( k – 1 ) +S - 2 ,

Где S – количество конъюнкций из числа заключённых в скобки, которые до вынесения общего множителя содержали ровно r +1 сомножителей и, следовательно, после вынесения множителя за скобки превратились в однобуквенные выражения. Таким образом, целесообразны те преобразования, при которых r, k и S достигают максимума.

При совместной реализации нескольких функций к скобочной форме целесообразно преобразовывать отдельно общие части и остатки. Иначе общие части нужно будет реализовывать несколько раз и, как правило, связанное с этим усложнение схемы не компенсируется переходом к скобочной форме. Переход к скобочной форме всегда увеличивает глубину схемы и, следовательно, уменьшает быстродействие -> оптимальная скобочная форма достигается перебором.

Особенности синтеза многоуровневых схем методом допустимых конфигураций (д.к.)

Изложенные ранее методы синтеза КС на элементах И-НЕ используют не все возможности оптимизации. Они основываются на аппарате минимизации булевых функций в классе д.н.ф.. Иной подход, основан на покрытии элементов множества М1 б.ф. совокупностью подмножеств (названных допустимых конфигурациями и чаще всего не являющихся интервалами). Понятие допустимой конфигурации основано на следующей интерпретации формулы А∩=А\В, что сводится к вычитанию из множества А элементов множества В.

Простейшим вариантом допустимой конфигурации является интервал, все внешние переменные которого положительны, т.е. интервал, соответствующая которому конъюнкция не содержит инверсий переменных. Такая конфигурация называется простой.

Д.к. в общем случае получается при вычитании из простой конфигурации совокупности допустимых конфигураций.

Используя аппарат допустимых конфигураций, можно сразу по матричной форме получить структурную формулу КС на языке допустимых конфигураций. Однако, выделение удачных допустимых конфигураций, приводящих к КС с меньшей сложностью, - дело опыта и интуиции. При проектировании КС для заданной б.ф. первоначально надо выделить основные конфигурации. Для чего находим на матрице минимальные (в векторном смысле) элементы множества М1. Далее для выделенного набора строим простую конфигурацию. Интервал, внешняя переменная которого равна 1. Затем необходимо удалить (вычесть) нулевые элементы, посредством некоторой допустимой конфигурации(интервал содержащий все нулевые наборы в первоначальной комбинации) этот интервал может содержать и некоторые единичные наборы.

F = V1 v V2; V1 = x2 \ Vдоп1; Vдоп1 = x4 \ x1x3; V2 = x3 \ Vдоп1 \ Vдоп2; Vдоп2 = x1x3.

&

&

&

&

&

X1

X3

X4

X3

X2

Vдоп1

Vдоп2

V1

V2

F

V2

Vдоп1

Vдоп2

   *      *

*               *      *      *

V1

При построении очередных допустимых конфигураций целесообразно использовать первоначальные.

Необходимо различать записи:

V1 = X1 \ Vдоп1 \ Vдоп2 И V1 = X1 \ ( Vдоп1 \ Vдоп2)

&

&

&

Vдоп1

Vдоп2

&

&

&


 

А также другие работы, которые могут Вас заинтересовать

25933. Реакторы. Назначение. Конструктивное исполнение. Принцип действия. Условия выбора. Сдвоенные реакторы 26 KB
  Реакторы. Сдвоенные реакторы. Для ограничения ударного тока короткого замыкания применяют токоограничивающие реакторы. По этой причине реакторы выполняют без стальных сердечников несмотря на то что при этом для поддержания такого же значения индуктивности их приходится делать больших размеров и массы.
25934. Измерительные трансформаторы тока и напряжения. Назначение. Конструктивное исполнение. Принцип действия. Условия выбора 26 KB
  Измерительные трансформаторы тока и напряжения. Трансформатор напряжения трансформатор предназначеный для преобразования высокого напряжения в низкое в цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения. Виды трансформаторов напряжения Заземляемый трансформатор напряжения однофазный трансформатор напряжения один конец первичной обмотки которого должен быть наглухо заземлен или трехфазный трансформатор напряжения нейтраль первичной обмотки которого...
25935. Разрядники: назначение, конструкция, принцип действия. Вентильные и трубчатые разрядники. Нелинейные ограничители перенапряжения (ОПН): назначение, конструкция, принцип действия. Условия выбора 52.5 KB
  Нелинейные ограничители перенапряжения ОПН: назначение конструкция принцип действия. В результате пробоя в трубке возникает интенсивная газогенерация и через выхлопное отверстие образуется продольное дутье достаточное для погашения дуги . ОПН Ограничитель перенапряжения нелинейный ОПН это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов.
25936. Устройство защитного отключения (УЗО). Назначение, схема подключения 53 KB
  Устройство защитного отключения УЗО. Устройство защитного отключения УЗО; более точное название: Устройство защитного отключения управляемое дифференциальным остаточным током сокр. УЗО−Д механический коммутационный аппарат или совокупность элементов которые при достижении превышении дифференциальным током заданного значения при определённых условиях эксплуатации должны вызвать размыкание контактов. Основная задача УЗО защита человека от поражения электрическим током и от возникновения пожара вызванного утечкой тока через...
25937. Конструкция и принцип действия воздушных выключателей. Достоинства и недостатки. Условия выбора. Сравнение с другими высоковольтными выключателями 27.5 KB
  Воздушные выключатели обладают высокими техническими характеристиками. Сетевые выключатели на напряжение 6кВ и выше применяемыев электрических сетях и предназначенные для пропуска и коммутации тока в нормальных условиях работы цепи и в условиях КЗ. Генераторные выключатели на напряжение 624 кВ предназначенные для пропуска и коммутации токов в нормальных условиях а также в пусковых режимах и при КЗ. Выключатели для электротермических установок с напряжениями 6220 кВ предназначенные для работы как в нормальных так и в аварийных режимах 4.
25938. Конструкция и принцип действия элегазовых выключателей. Достоинства и недостатки. Условия выбора. Сравнение с другими высоковольтными выключателями 23 KB
  В элегазовых выключателях гашение дуги происходит так же как и в воздушных выключателях при интенсивнои охлаждении дуги потоком газа. В элегазовых дугогасительных устройствах в отличие о воздушных при гашении дуги истечение газа через сопло происходит не в атмосферу а в замкнутый объем камеры заполненный элегазом при небольшом избыточном давлении. По способу гашения дуги в элегазе различают следующие ДУ: с системой продольного дутья в которую предварительно сжатый воздух поступает из резервуара с относительно высоким давлением элегаза ДУ...
25939. Выключатели нагрузки. Назначение, конструктивное исполнение и принцип действия выключателей нагрузки. Условия выбора 21 KB
  Выключатели нагрузки. Назначение конструктивное исполнение и принцип действия выключателей нагрузки. Выключатели нагрузки используются для оперативного соединения и разъединения цепи. Выключатель нагрузки обеспечивает двухкратное включение нормированного для него тока включения на короткое замыкание без повреждений препятствующих его дальнейшей работе в нормальном и эксплуатационном режиме.
25940. Расчет деревянных, металлических, железобетонных перекрытий 1.07 MB
  Орел 2011 Расчет деревянного перекрытия Подобрать сечение деревянной балки для перекрытия жилого дома.Предварительно принимаем собственный вес одного метра балки qnбалки=025кН м;f=1.1 qбалки= qnбалки f=0.Собираем нагрузку на погонный метр балки с учетом её собственного веса: qn=qnперекрытияlгр qnбалки=18140275=277кН м; q= qперекрытияlгр qбалки=234120275=3083кН м.
25941. СБОРНО-МОНОЛИТНЫЕ КОНСТРУКЦИИ 26.5 KB
  СБОРНОМОНОЛИТНЫЕ КОНСТРУКЦИИ конструкции состоящие из заранее изготовленных на заводах отд. Наибольшее распространение получили сборномонолитные конструкции со сборными элементами из железобетона см. Железобетонные конструкции . арматуру конструкции и иногда используются в качестве формы опалубки для монолитного бетона; их целесообразно делать предвари тсльно напряженными.