1893

Особенности синтеза многоуровневых схем. Методы вынесения за скобки и допустимых конфигураций

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Многоуровневая реализация на основе скобочных форм. Особенности синтеза многоуровневых схем методом допустимых конфигураций (д.к.).

Русский

2013-01-06

26.87 KB

6 чел.

Особенности синтеза многоуровневых схем. Методы вынесения за скобки и допустимых конфигураций.

Известно, что элементы этого класса образуют полный функциональный базис, т.е. любая КС может быть построена только на этих элементах. Сами элементы И-НЕ легко реализуются с использованием интегральной технологии, микросхема может содержать несколько вентилей И-НЕ. В структурном плане каждый вентиль состоит из последовательно соединённых схем И и инвертора, причём выходной каскад усиливает и формирует сигнал, что позволяет подавать выход одного элемента И-НЕ на входы других, наращивая глубину КС практически без ограничений.

Для реализации булевой функции на элементах И-НЕ удобно представить её в д.н.ф.:y=k1 \/ k2 \/…\/ km, где ki – простая конъюнкция, i = 1,2,…,m. Затем д.н.ф. дважды инвертируется по закону де’Моргана:

Естественно что нет необходимости всякий раз при реализации булевой функции дважды инвертировать и преобразовывать д.н.ф.. Справедливо следующее правило: для реализации б.ф. на элементах И-НЕ достаточно по д.н.ф. построить двухярусную реализацию на элементах И и ИЛИ и затем все вентили (И и ИЛИ) заменить вентилями И-НЕ. Если некоторая конъюнкция в д.н.ф. состоит из одной буквы, то на выходной вентиль подаётся входная переменная и знак инверсии над этой переменной меняется на противоположный. Если входные переменные представлены не парафазным кодом, т.е. только прямыми значениями, то схема дополняется ярусом инверторов и таким образом становиться трех ярусной.

Многоуровневая реализация на основе скобочных форм.

Определённого сокращения можно достичь, если при реализации б.ф. перейти от д.н.ф. к скобочным формам. Рассмотрим только такие скобочные формы, которые получаются из д.н.ф. путём объединения нескольких конъюнкций в скобки с вынесением за скобки общего множителя, состоящего из одной или нескольких переменных. В этом случае каждая конъюнкция, входящая в дизъюнкцию, будет содержать в числе сомножителей не более одной дизъюнкции. В свою очередь любая дизъюнкция, являющаяся сомножителем, может быть также преобразована в скобочную форму и таким образом б.ф. оказывается представленной в виде вложенных друг в друга выражений, заключённых в скобки.

Пример:

y=x1x2x3~x4x6 \/ x2x3x5x6 \/ x1~x2~x3x5x6 \/ ~x2~x3~x4x6 \/ x4x5~x6 \/ x3x4x5

y=x6(x2x3(x1~x4 \/ x5) \/ ~x2~x3 (x1x5 \/ ~x4)) \/ x4x5(~x6 \/ x3)

Если б.ф. представлена в скобочной форме, то соответствующая ей реализация на элементах И-НЕ получается путём многократного применения того же приёма двойного инвертирования исходной дизъюнкции с последующим преобразованием полученного выражения по закону де’Моргана. Удобно обозначить каждую дизъюнкцию, входящую в скобочную форму, некоторой промежуточной переменной и для реализации этой дизъюнкции применить описанный выше приём.

Пример:

v1=x1~x4 \/ x5, v2=x1x5 \/ ~x4, v3=x2x3v1 \/ ~x2~x3v2, v4=~x6 \/ x3, y=x6v3 \/ x4x5v4

Ясно, что переход от д.н.ф. к скобочной форме не однозначен и что различным скобочным формам соответствуют схемы различной сложности. При оценке эффективности вынесения символов за скобки по критерию уменьшения суммарного числа входов вентилей И-НЕ необходимо руководствоваться правилом: если в дизъюнктивной форме объединить в скобки k слагаемых с вынесением за скобки общего множителя, содержащего r переменных, то это приведёт к сокращению G суммарного числа входов в КС.

G = r ( k – 1 ) +S - 2 ,

Где S – количество конъюнкций из числа заключённых в скобки, которые до вынесения общего множителя содержали ровно r +1 сомножителей и, следовательно, после вынесения множителя за скобки превратились в однобуквенные выражения. Таким образом, целесообразны те преобразования, при которых r, k и S достигают максимума.

При совместной реализации нескольких функций к скобочной форме целесообразно преобразовывать отдельно общие части и остатки. Иначе общие части нужно будет реализовывать несколько раз и, как правило, связанное с этим усложнение схемы не компенсируется переходом к скобочной форме. Переход к скобочной форме всегда увеличивает глубину схемы и, следовательно, уменьшает быстродействие -> оптимальная скобочная форма достигается перебором.

Особенности синтеза многоуровневых схем методом допустимых конфигураций (д.к.)

Изложенные ранее методы синтеза КС на элементах И-НЕ используют не все возможности оптимизации. Они основываются на аппарате минимизации булевых функций в классе д.н.ф.. Иной подход, основан на покрытии элементов множества М1 б.ф. совокупностью подмножеств (названных допустимых конфигурациями и чаще всего не являющихся интервалами). Понятие допустимой конфигурации основано на следующей интерпретации формулы А∩=А\В, что сводится к вычитанию из множества А элементов множества В.

Простейшим вариантом допустимой конфигурации является интервал, все внешние переменные которого положительны, т.е. интервал, соответствующая которому конъюнкция не содержит инверсий переменных. Такая конфигурация называется простой.

Д.к. в общем случае получается при вычитании из простой конфигурации совокупности допустимых конфигураций.

Используя аппарат допустимых конфигураций, можно сразу по матричной форме получить структурную формулу КС на языке допустимых конфигураций. Однако, выделение удачных допустимых конфигураций, приводящих к КС с меньшей сложностью, - дело опыта и интуиции. При проектировании КС для заданной б.ф. первоначально надо выделить основные конфигурации. Для чего находим на матрице минимальные (в векторном смысле) элементы множества М1. Далее для выделенного набора строим простую конфигурацию. Интервал, внешняя переменная которого равна 1. Затем необходимо удалить (вычесть) нулевые элементы, посредством некоторой допустимой конфигурации(интервал содержащий все нулевые наборы в первоначальной комбинации) этот интервал может содержать и некоторые единичные наборы.

F = V1 v V2; V1 = x2 \ Vдоп1; Vдоп1 = x4 \ x1x3; V2 = x3 \ Vдоп1 \ Vдоп2; Vдоп2 = x1x3.

&

&

&

&

&

X1

X3

X4

X3

X2

Vдоп1

Vдоп2

V1

V2

F

V2

Vдоп1

Vдоп2

   *      *

*               *      *      *

V1

При построении очередных допустимых конфигураций целесообразно использовать первоначальные.

Необходимо различать записи:

V1 = X1 \ Vдоп1 \ Vдоп2 И V1 = X1 \ ( Vдоп1 \ Vдоп2)

&

&

&

Vдоп1

Vдоп2

&

&

&


 

А также другие работы, которые могут Вас заинтересовать

59959. Водойми України. Розкриття значення води для життя людини у творах В. Сухомлинського. Інтегрований урок з природознавства та позакласного читання 159.5 KB
  Мета. Сформувати поняття про водойми: джерело озеро, болото, море; розвивати спостережливість і увагу; виховувати любов до природи, бережне ставлення до її багатств.
59960. Водиця – усьому цариця 32 KB
  Ми проведемо урок у формі гри етапами якої будуть різні конкурси. ІІ Проведення гри 1 конкурс РОЗМИНКА Командам пропонується написати географічний диктант. Кожна правильна відповідь...
59961. Военные походы фараонов 73.5 KB
  Цели урока: Образовательная расширить знания учащихся об основных понятиях урока подвести учащихся к пониманию причин последствий и характера военных походов фараонов Древнего Египта Развивающая создать условия для развития коммуникационных умений и навыков умения обобщать изученный материал делать выводы.
59962. Вогники наших сердець 51.5 KB
  Ведучий: Усі діти люблять свою маму і для кожного вона єдина і найкраща. Я дуже люблю свою маму Ведучий: В дарунок усім мамам танок Полькатрійка Розповідь віршів з показами фото слайдів під музичний супровід Учениця 1. Ведучий.
59963. НЕХАЙ ВОГОНЬ В СЕРЦЯХ ПАЛАЄ, А ПОЖЕЖ ХАЙ НЕ БУВАЄ 542 KB
  МЕТА: продовжувати ознайомлювати учнів із поняттям вогонь; формувати уявлення про причини виникнення пожежі в побуті та її наслідки; вчити учнів правильно діяти у випадку виявлення пожежі вдома чи інших об’єктах; розвивати навички самозахисту в умовах задимленого помешкання...
59965. План-конспект уроку фізичної культури на матеріалі волейбол 71.5 KB
  Ходьба: звичайна в обхід спортзалу; на п`ятках руки вгору; на носках руки в замок вгору; перекат з п’ятки на носок руки на пояс на зовнішній стороні стопи руки в сторони; на внутрішній стороні стопи руки за спину; в присіді...
59966. Правление князя Владимира Великого 66.5 KB
  ЦЕЛЬ: рассмотреть внешнюю и внутреннею политику Владимира Великого раскрыть её противоречия: рассмотреть территориальные изменения; установить хронологическую последовательность событий; изучить реформы Владимира и их значение для дальнейшего развития Русского государства...
59967. Ми можемо відкрити новий світ, коли навчимося ставити вірні запитання 387.5 KB
  Добре поставлене запитання – це запитання, на яке учень захоче відповісти, зможе відповісти або над яким він схоче задуматись, і він буде зацікавлений у співпраці. Уміння ставити запитання є необхідною ознакою фахової та педагогічної майстерності.