1893

Особенности синтеза многоуровневых схем. Методы вынесения за скобки и допустимых конфигураций

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Многоуровневая реализация на основе скобочных форм. Особенности синтеза многоуровневых схем методом допустимых конфигураций (д.к.).

Русский

2013-01-06

26.87 KB

6 чел.

Особенности синтеза многоуровневых схем. Методы вынесения за скобки и допустимых конфигураций.

Известно, что элементы этого класса образуют полный функциональный базис, т.е. любая КС может быть построена только на этих элементах. Сами элементы И-НЕ легко реализуются с использованием интегральной технологии, микросхема может содержать несколько вентилей И-НЕ. В структурном плане каждый вентиль состоит из последовательно соединённых схем И и инвертора, причём выходной каскад усиливает и формирует сигнал, что позволяет подавать выход одного элемента И-НЕ на входы других, наращивая глубину КС практически без ограничений.

Для реализации булевой функции на элементах И-НЕ удобно представить её в д.н.ф.:y=k1 \/ k2 \/…\/ km, где ki – простая конъюнкция, i = 1,2,…,m. Затем д.н.ф. дважды инвертируется по закону де’Моргана:

Естественно что нет необходимости всякий раз при реализации булевой функции дважды инвертировать и преобразовывать д.н.ф.. Справедливо следующее правило: для реализации б.ф. на элементах И-НЕ достаточно по д.н.ф. построить двухярусную реализацию на элементах И и ИЛИ и затем все вентили (И и ИЛИ) заменить вентилями И-НЕ. Если некоторая конъюнкция в д.н.ф. состоит из одной буквы, то на выходной вентиль подаётся входная переменная и знак инверсии над этой переменной меняется на противоположный. Если входные переменные представлены не парафазным кодом, т.е. только прямыми значениями, то схема дополняется ярусом инверторов и таким образом становиться трех ярусной.

Многоуровневая реализация на основе скобочных форм.

Определённого сокращения можно достичь, если при реализации б.ф. перейти от д.н.ф. к скобочным формам. Рассмотрим только такие скобочные формы, которые получаются из д.н.ф. путём объединения нескольких конъюнкций в скобки с вынесением за скобки общего множителя, состоящего из одной или нескольких переменных. В этом случае каждая конъюнкция, входящая в дизъюнкцию, будет содержать в числе сомножителей не более одной дизъюнкции. В свою очередь любая дизъюнкция, являющаяся сомножителем, может быть также преобразована в скобочную форму и таким образом б.ф. оказывается представленной в виде вложенных друг в друга выражений, заключённых в скобки.

Пример:

y=x1x2x3~x4x6 \/ x2x3x5x6 \/ x1~x2~x3x5x6 \/ ~x2~x3~x4x6 \/ x4x5~x6 \/ x3x4x5

y=x6(x2x3(x1~x4 \/ x5) \/ ~x2~x3 (x1x5 \/ ~x4)) \/ x4x5(~x6 \/ x3)

Если б.ф. представлена в скобочной форме, то соответствующая ей реализация на элементах И-НЕ получается путём многократного применения того же приёма двойного инвертирования исходной дизъюнкции с последующим преобразованием полученного выражения по закону де’Моргана. Удобно обозначить каждую дизъюнкцию, входящую в скобочную форму, некоторой промежуточной переменной и для реализации этой дизъюнкции применить описанный выше приём.

Пример:

v1=x1~x4 \/ x5, v2=x1x5 \/ ~x4, v3=x2x3v1 \/ ~x2~x3v2, v4=~x6 \/ x3, y=x6v3 \/ x4x5v4

Ясно, что переход от д.н.ф. к скобочной форме не однозначен и что различным скобочным формам соответствуют схемы различной сложности. При оценке эффективности вынесения символов за скобки по критерию уменьшения суммарного числа входов вентилей И-НЕ необходимо руководствоваться правилом: если в дизъюнктивной форме объединить в скобки k слагаемых с вынесением за скобки общего множителя, содержащего r переменных, то это приведёт к сокращению G суммарного числа входов в КС.

G = r ( k – 1 ) +S - 2 ,

Где S – количество конъюнкций из числа заключённых в скобки, которые до вынесения общего множителя содержали ровно r +1 сомножителей и, следовательно, после вынесения множителя за скобки превратились в однобуквенные выражения. Таким образом, целесообразны те преобразования, при которых r, k и S достигают максимума.

При совместной реализации нескольких функций к скобочной форме целесообразно преобразовывать отдельно общие части и остатки. Иначе общие части нужно будет реализовывать несколько раз и, как правило, связанное с этим усложнение схемы не компенсируется переходом к скобочной форме. Переход к скобочной форме всегда увеличивает глубину схемы и, следовательно, уменьшает быстродействие -> оптимальная скобочная форма достигается перебором.

Особенности синтеза многоуровневых схем методом допустимых конфигураций (д.к.)

Изложенные ранее методы синтеза КС на элементах И-НЕ используют не все возможности оптимизации. Они основываются на аппарате минимизации булевых функций в классе д.н.ф.. Иной подход, основан на покрытии элементов множества М1 б.ф. совокупностью подмножеств (названных допустимых конфигурациями и чаще всего не являющихся интервалами). Понятие допустимой конфигурации основано на следующей интерпретации формулы А∩=А\В, что сводится к вычитанию из множества А элементов множества В.

Простейшим вариантом допустимой конфигурации является интервал, все внешние переменные которого положительны, т.е. интервал, соответствующая которому конъюнкция не содержит инверсий переменных. Такая конфигурация называется простой.

Д.к. в общем случае получается при вычитании из простой конфигурации совокупности допустимых конфигураций.

Используя аппарат допустимых конфигураций, можно сразу по матричной форме получить структурную формулу КС на языке допустимых конфигураций. Однако, выделение удачных допустимых конфигураций, приводящих к КС с меньшей сложностью, - дело опыта и интуиции. При проектировании КС для заданной б.ф. первоначально надо выделить основные конфигурации. Для чего находим на матрице минимальные (в векторном смысле) элементы множества М1. Далее для выделенного набора строим простую конфигурацию. Интервал, внешняя переменная которого равна 1. Затем необходимо удалить (вычесть) нулевые элементы, посредством некоторой допустимой конфигурации(интервал содержащий все нулевые наборы в первоначальной комбинации) этот интервал может содержать и некоторые единичные наборы.

F = V1 v V2; V1 = x2 \ Vдоп1; Vдоп1 = x4 \ x1x3; V2 = x3 \ Vдоп1 \ Vдоп2; Vдоп2 = x1x3.

&

&

&

&

&

X1

X3

X4

X3

X2

Vдоп1

Vдоп2

V1

V2

F

V2

Vдоп1

Vдоп2

   *      *

*               *      *      *

V1

При построении очередных допустимых конфигураций целесообразно использовать первоначальные.

Необходимо различать записи:

V1 = X1 \ Vдоп1 \ Vдоп2 И V1 = X1 \ ( Vдоп1 \ Vдоп2)

&

&

&

Vдоп1

Vдоп2

&

&

&


 

А также другие работы, которые могут Вас заинтересовать

21708. Модуль Жизненный цикл интеллектуальной системы 147.5 KB
  2] Этап 2: Разработка прототипной системы [1.4] Этап 4: Оценка системы [1.5] Этап 5: Стыковка системы [1.
21709. Модуль Методы представления знаний: Нечеткая логика 192 KB
  Математический аппарат Характеристикой нечеткого множества выступает функция принадлежности Membership Function. Обозначим через MFcx степень принадлежности к нечеткому множеству C представляющей собой обобщение понятия характеристической функции обычного множества. Значение MFcx=0 означает отсутствие принадлежности к множеству 1 полную принадлежность. Так чай с температурой 60 С принадлежит к множеству 'Горячий' со степенью принадлежности 080.
21711. Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей 181.5 KB
  Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей Для решения широкого класса задач эксплуатации и проектирования с учётом фактора надёжности необходимо определение вероятностей возникновения возможных последствий от нарушения электроснабжения потребителей которые сводятся к следующим: вероятность возникновения катастрофических и аварийных ситуаций исследование которых необходимо для нормирования надёжности электроснабжения; вероятность возникновения отдельных составляющих ущерба их величина и...
21712. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ ЭМС. КОНТРОЛЬНЫЕ ИСПЫТАНИЯ 2.49 MB
  Показатели надежности экспериментальными методами могут быть получены по результатам либо испытаний специальных или совмещенных либо наблюдением за функционированием объекта в условиях эксплуатации. Методы испытаний организуются специально с целью определения показателей надежности объем их обычно заранее планируется условия функционирования объектов устанавливаются исходя из требований оценки конкретных показателей. Показатели надежности таких объектов оцениваются в основном либо по результатам совмещенных испытаний при которых...
21713. СТАТИСТИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ, АНАЛИЗА И КОНТРОЛЯ НАДЕЖНОСТИ 358.5 KB
  Сбор информации об отказе элементов технических систем В общем комплексе мероприятий по обеспечению надёжности любого изделия сбор статистической информации об отказах и оценка показателей надёжности в условиях эксплуатации являются последним заключительным этапом. При этом появляется возможность оценить реальные значения показателей надежности и следовательно оценить эффективность мероприятий по обеспечению надёжности на всех этапах проектирование производство испытания монтаж эксплуатация. Поэтому особое значение приобретает вопрос...
21714. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ ЭМС. ОПРЕДЕЛИТЕЛЬНЫЕ ИСПЫТАНИЯ 3.06 MB
  При определительных испытаниях могут оцениваться законы распределения отказов и их параметры. При определительных испытаниях могут оцениваться законы распределения отказов и их параметры. Однако существует универсальный план испытаний позволяющий по единой методике проводить статистическую оценку величины Р для изделий с любым законом распределения. Полученные данные по отказам изделий в результате испытаний или по данным эксплуатации подвергаются статистической обработке для получения следующих результатов: определения вида функции...
21715. Планирование эксперимента при ускоренных испытаниях электрических машин 102 KB
  ТЕМА № 2 Регрессионный анализ установившихся режимов электрической системы Для этой цели целесообразно использование регрессионного моделирования сложной системы. При этом с использованием имеющихся программ расчета установившегося режима на ЭВМ проводятся целенаправленные исследования в результате которых получаются регрессионные модели для анализа или управления. Такие модели могут быть получены при регрессионном анализе или методом планирования многофакторного эксперимента МПЭ. При этом для построения линейных моделей используется полный...
21716. Законы распределения отказов 2.99 MB
  Законы распределения отказов Случайной называется величина которая в результате испытаний может принять то или иное значение причем заранее неизвестно какое именно. Если задан ряд распределений вероятностей для значений случайной величины X то математическое ожидание определяется по формуле Показателями характеризующими степень рассеяния случайной величины около своего математического ожидания являются дисперсия и среднее квадратическое отклонение: Для более полного описания случайных величин вводятся понятия функции распределения...