1893

Особенности синтеза многоуровневых схем. Методы вынесения за скобки и допустимых конфигураций

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Многоуровневая реализация на основе скобочных форм. Особенности синтеза многоуровневых схем методом допустимых конфигураций (д.к.).

Русский

2013-01-06

26.87 KB

6 чел.

Особенности синтеза многоуровневых схем. Методы вынесения за скобки и допустимых конфигураций.

Известно, что элементы этого класса образуют полный функциональный базис, т.е. любая КС может быть построена только на этих элементах. Сами элементы И-НЕ легко реализуются с использованием интегральной технологии, микросхема может содержать несколько вентилей И-НЕ. В структурном плане каждый вентиль состоит из последовательно соединённых схем И и инвертора, причём выходной каскад усиливает и формирует сигнал, что позволяет подавать выход одного элемента И-НЕ на входы других, наращивая глубину КС практически без ограничений.

Для реализации булевой функции на элементах И-НЕ удобно представить её в д.н.ф.:y=k1 \/ k2 \/…\/ km, где ki – простая конъюнкция, i = 1,2,…,m. Затем д.н.ф. дважды инвертируется по закону де’Моргана:

Естественно что нет необходимости всякий раз при реализации булевой функции дважды инвертировать и преобразовывать д.н.ф.. Справедливо следующее правило: для реализации б.ф. на элементах И-НЕ достаточно по д.н.ф. построить двухярусную реализацию на элементах И и ИЛИ и затем все вентили (И и ИЛИ) заменить вентилями И-НЕ. Если некоторая конъюнкция в д.н.ф. состоит из одной буквы, то на выходной вентиль подаётся входная переменная и знак инверсии над этой переменной меняется на противоположный. Если входные переменные представлены не парафазным кодом, т.е. только прямыми значениями, то схема дополняется ярусом инверторов и таким образом становиться трех ярусной.

Многоуровневая реализация на основе скобочных форм.

Определённого сокращения можно достичь, если при реализации б.ф. перейти от д.н.ф. к скобочным формам. Рассмотрим только такие скобочные формы, которые получаются из д.н.ф. путём объединения нескольких конъюнкций в скобки с вынесением за скобки общего множителя, состоящего из одной или нескольких переменных. В этом случае каждая конъюнкция, входящая в дизъюнкцию, будет содержать в числе сомножителей не более одной дизъюнкции. В свою очередь любая дизъюнкция, являющаяся сомножителем, может быть также преобразована в скобочную форму и таким образом б.ф. оказывается представленной в виде вложенных друг в друга выражений, заключённых в скобки.

Пример:

y=x1x2x3~x4x6 \/ x2x3x5x6 \/ x1~x2~x3x5x6 \/ ~x2~x3~x4x6 \/ x4x5~x6 \/ x3x4x5

y=x6(x2x3(x1~x4 \/ x5) \/ ~x2~x3 (x1x5 \/ ~x4)) \/ x4x5(~x6 \/ x3)

Если б.ф. представлена в скобочной форме, то соответствующая ей реализация на элементах И-НЕ получается путём многократного применения того же приёма двойного инвертирования исходной дизъюнкции с последующим преобразованием полученного выражения по закону де’Моргана. Удобно обозначить каждую дизъюнкцию, входящую в скобочную форму, некоторой промежуточной переменной и для реализации этой дизъюнкции применить описанный выше приём.

Пример:

v1=x1~x4 \/ x5, v2=x1x5 \/ ~x4, v3=x2x3v1 \/ ~x2~x3v2, v4=~x6 \/ x3, y=x6v3 \/ x4x5v4

Ясно, что переход от д.н.ф. к скобочной форме не однозначен и что различным скобочным формам соответствуют схемы различной сложности. При оценке эффективности вынесения символов за скобки по критерию уменьшения суммарного числа входов вентилей И-НЕ необходимо руководствоваться правилом: если в дизъюнктивной форме объединить в скобки k слагаемых с вынесением за скобки общего множителя, содержащего r переменных, то это приведёт к сокращению G суммарного числа входов в КС.

G = r ( k – 1 ) +S - 2 ,

Где S – количество конъюнкций из числа заключённых в скобки, которые до вынесения общего множителя содержали ровно r +1 сомножителей и, следовательно, после вынесения множителя за скобки превратились в однобуквенные выражения. Таким образом, целесообразны те преобразования, при которых r, k и S достигают максимума.

При совместной реализации нескольких функций к скобочной форме целесообразно преобразовывать отдельно общие части и остатки. Иначе общие части нужно будет реализовывать несколько раз и, как правило, связанное с этим усложнение схемы не компенсируется переходом к скобочной форме. Переход к скобочной форме всегда увеличивает глубину схемы и, следовательно, уменьшает быстродействие -> оптимальная скобочная форма достигается перебором.

Особенности синтеза многоуровневых схем методом допустимых конфигураций (д.к.)

Изложенные ранее методы синтеза КС на элементах И-НЕ используют не все возможности оптимизации. Они основываются на аппарате минимизации булевых функций в классе д.н.ф.. Иной подход, основан на покрытии элементов множества М1 б.ф. совокупностью подмножеств (названных допустимых конфигурациями и чаще всего не являющихся интервалами). Понятие допустимой конфигурации основано на следующей интерпретации формулы А∩=А\В, что сводится к вычитанию из множества А элементов множества В.

Простейшим вариантом допустимой конфигурации является интервал, все внешние переменные которого положительны, т.е. интервал, соответствующая которому конъюнкция не содержит инверсий переменных. Такая конфигурация называется простой.

Д.к. в общем случае получается при вычитании из простой конфигурации совокупности допустимых конфигураций.

Используя аппарат допустимых конфигураций, можно сразу по матричной форме получить структурную формулу КС на языке допустимых конфигураций. Однако, выделение удачных допустимых конфигураций, приводящих к КС с меньшей сложностью, - дело опыта и интуиции. При проектировании КС для заданной б.ф. первоначально надо выделить основные конфигурации. Для чего находим на матрице минимальные (в векторном смысле) элементы множества М1. Далее для выделенного набора строим простую конфигурацию. Интервал, внешняя переменная которого равна 1. Затем необходимо удалить (вычесть) нулевые элементы, посредством некоторой допустимой конфигурации(интервал содержащий все нулевые наборы в первоначальной комбинации) этот интервал может содержать и некоторые единичные наборы.

F = V1 v V2; V1 = x2 \ Vдоп1; Vдоп1 = x4 \ x1x3; V2 = x3 \ Vдоп1 \ Vдоп2; Vдоп2 = x1x3.

&

&

&

&

&

X1

X3

X4

X3

X2

Vдоп1

Vдоп2

V1

V2

F

V2

Vдоп1

Vдоп2

   *      *

*               *      *      *

V1

При построении очередных допустимых конфигураций целесообразно использовать первоначальные.

Необходимо различать записи:

V1 = X1 \ Vдоп1 \ Vдоп2 И V1 = X1 \ ( Vдоп1 \ Vдоп2)

&

&

&

Vдоп1

Vдоп2

&

&

&


 

А также другие работы, которые могут Вас заинтересовать

49844. Аналитическая копия работы Джорджо де Кирико 11.13 MB
  Джорджо де Кирико создатель практик и теоретик. Де Кирико The Seer – пророк. В итоге выбор в качестве основного предмета исследования творчества Джорджо Де Кирико на фоне западноевропейских и частично отечественных реализмов 1920-1930х гг.
49845. Аналитическая копия работы Дж. Моранди «Красный натюрморт» 4.3 MB
  Основная тематика творчества метафизиков – геометрия простых предметов, взаимоотношения живого и неживого – находит выражение в натюрмортах или в фантастических композициях с фигурами, составленными из манекенов и портновских лекал.
49846. Виды механической обработки материалов резанием 592.5 KB
  Характерным признаком его является непрерывность резания. Процесс фрезерования отличается от других процессов резания тем что каждый зуб фрезы за один ее оборот находится в работе относительно малый промежуток времени. Большую часть оборота зуб фрезы проходит не производя резания. Физические основы процесса резания: деформация при стружкообразовании сила резания и тепловые явления.
49847. ВЕРБАЛІЗАЦІЯ КОНЦЕПТУ ЖИТТЯ В ПАРЕМІЙНІЙ КАРТИНІ СВІТУ 166.5 KB
  У світлі сьогоденної антропоцентричної парадигми лінгвістики проблема взаємодії мови і культури набуває особливої актуальності. Мова акумулює надбання культури етносу, тому в ній втілені світогляд народу, його досвід, традиції тощо. Важливим терміном для дослідження взаємодії мови і культури є концепт.
49848. ИНФОРМАТИКА. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ 130.5 KB
  Информационные системы и технологии направлению подготовки дипломированного специалиста по специальности Информационные системы Общие положения Написание и защита курсовых работ важнейшая форма самостоятельной учебной и научной работы студентов осуществляемая под руководством преподавателя. Целью курсовой работы является подготовка студента к написанию и защите дипломной работы. Допускается вхождение курсовой работы в дипломную работу как в виде целостного раздела так и в виде отдельных фрагментов. Кроме того выполнение...
49849. ИЗУЧЕНИЕ ВЕНТИЛЬНОГО ФОТОЭФФЕКТА 137.5 KB
  В области границы раздела полупроводников р-типа и n-типа образуется так называемый запирающий слой, обедненный основными носителями заряда - электронами со стороны электронного полупроводника и дырками - со стороны дырочного полупроводника.
49850. Операции с одномерными массивами в Delphi 929.12 KB
  Бурное развитие вычислительной техники, потребность в эффективных средствах разработки программного обеспечения привели к появлению систем программирования, ориентированных на так называемую быструю разработку, среди которых можно выделить Borland Delphi и Microsoft Visual Basic. В основе систем быстрой разработки (RAD-систем, Rapid Application Development — среда быстрой разработки приложений)
49851. Проект подстанции для ткацкого цеха №3 предприятия 2.17 MB
  Определяем установленную активную мощность оборудования цеха. Определяем установленную активную мощность технологического оборудования: Ру. Определяем активную установленную мощность для освещения: Р у. Определяем полную активную установленную мощность цеха: Р у = Ру.