18988

Распределение Максвелла

Лекция

Физика

Лекция I 1. Распределение Максвелла. Статистическая физика изучает свойства макроскопических тел т.е. систем состоящих из огромного числа частиц. Например для аудитории с размерами учитывая что каждый моль воздуха занимает объем 224 л и содержит число Авогадро мол

Русский

2013-07-11

326.5 KB

2 чел.

Лекция I

1. Распределение Максвелла.

Статистическая физика изучает свойства макроскопических тел, т.е. систем, состоящих из огромного числа частиц. Например, для аудитории с размерами , учитывая, что каждый моль воздуха занимает объем 22,4 л и содержит  (число Авогадро) молекул, получаем впечатляющее число  частиц воздуха в такой аудитории.

К.Дж. Максвелл был, по-видимому, одним из первых, кто понял, что не нужно прослеживать судьбу каждой молекулы и предложил вероятностное описание таких систем. Следует помнить, что квантовая механика была открыта спустя более чем полвека. Распределение Максвелла по импульсам

                                    (I.1.1)

определяет вероятность найти частицу идеального газа при температуре  с импульсом  в элементе объема импульсного пространства . Здесь масса частицы, постоянная Больцмана:

                                                   (I.1.2)

Из распределения (I.1.1) непосредственно следует и распределение по энергиям частиц . Учитывая, что трехмерный объем шара с радиусом  равен , получаем

                                        (I.1.3)

Положение максимума функции ,  следует из равенства

                              (I.1.4)

Распределение (I.1.3) представим в форме

                 (I.1.5)

где удобная для дальнейшего безразмерная переменная (см. Рис II.1). Отсюда для среднего значения  сразу же получаем

                                      (I.1.6)

Здесь гамма-функция Эйлера: , . Поскольку

,    ,     ,     ,     (I.1.7)

то для среднего значения, флуктуации  и относительной флуктуации  энергии находим известные результаты

                                    (I.1.8)

2. Ансамбль Гиббса.

Идею Максвелла о вероятностном описании Джозайя Виллард Гиббс (1839 – 1903) распространил на произвольные механические системы с большим числом степеней свободы. В классической теории развитие таких систем во времени определяется уравнениями Гамильтона

                            (I.2.1)

где число степеней свободы. Здесь  и  - обобщенные координаты и импульсы,  - гамильтониан (точнее функция Гамильтона) системы. В уравнениях (I.2.1) приняты обозначения , . Чтобы обойти практически неразрешимую проблему интегрирования уравнений (I.2.1), Гиббс предложил рассматривать большое число  (фактически бесконечное) идентичных механических систем с гамильтонианом  – ансамбль Гиббса. Тогда вероятность найти такую систему в элементе фазового пространства  выражается через функцию статистического распределения:

,                               (I.2.2)

Если удается найти такую функцию, то среднее значение любой физической величины  можно вычислить “простым” интегрированием по фазовому пространству:

                                    (I.2.3)

Чтобы указать явный вид функции статистического распределения, Гиббс использовал несколько соображений. Вот первое из них.

3. Теорема Лиувилля.

Хорошо известно, что развитие во времени является каноническим преобразованием:

,                                    (I.3.1)

с производящей функцией , так что

                                                        (I.3.2)

Поскольку такое каноническое преобразование можно рассматривать как замену переменных, то при развитии системы во времени сохраняется фазовый объем:

                                (I.3.3)

Формально это можно получить так

,                                                         (I.3.4)

где

- якобиан преобразования. Вычислим его.

Учитывая (I.3.2), получаем

,

откуда и следует (I.3.3), т.е. теорема Лиувилля.

Рассмотрим теперь некоторый объем фазового пространства , содержащий  систем из их полного числа .

С течением времени эти  систем займут фазовый объем ,

Поэтому

                                                        (I.3.5)

Если рассмотреть достаточно малый объем , то функция  в нем практически постоянна и

.

Отсюда согласно (I.3.3) немедленно заключаем

,                                                       (I.3.6)

т.е. функция статистического распределения является интегралом движения. Это утверждение также называют теоремой Лиувилля.

Этот важный результат можно получить и непосредственно. Рассмотрим элемент фазового пространства  и вычислим убыль систем из него с течением времени (см. Рис. I.1, точками изображены системы, находящиеся в этом объеме).

  

                                         Рис. I.1

Убыль через отрезок , связанная с изменением координаты

Убыль через отрезок  за счет изменения импульса  

Полная убыль точек из фазового объема  

                                                     (I.3.7)

Это уравнение является непосредственным обобщением уравнения непрерывности для идеальной жидкости

                                                          (I.3.8)

Учитывая уравнения Гамильтона (I.2.1) в правой части уравнения (I.3.7), получаем

                     (I.3.9)

Где

- скобки Пуассона. Так как полная производная согласно (I.3.9)

,                                              (I.3.10)

то это означает, что функция статистического распределения является интегралом движения, в полном соответствии с утверждением (I.3.6).

4. Каноническое распределение Гиббса.

Изучение зависимости функции распределения  от времени, т.е. решение уравнения (I.3.10), исключительно сложная задача и является предметом исследования физической кинетики, которой посвящен последний Х том курса Л.Д.Ландау и Е.М.Лифшица. Ее результаты не всегда удовлетворительны, достаточно вспомнить прогнозы метеослужбы. Задача нашего курса менее амбициозная – она состоит в исследовании стационарных ситуаций, когда после окончания релаксационных процессов система приходит в состояние так называемого термодинамического равновесия. Итак, в дальнейшем

                                     (I.4.1)

В этом случае возникают дополнительные упрощения. Действительно, одна только теорема Лиувилля не слишком конструктивна. Функция статистического распределения  является интегралом движения и, следовательно, может быть выражена только через интегралы движения механической системы. Однако их число равно , что не очень обнадеживает. Ситуацию кардинально меняет соображение, что  является мультипликативной функцией:

,                                                           (I.4.2)

где  и  - функции распределения для двух независимых систем, а  - для объединенной системы. В этом случае  и , так что справедливо равенство (I.4.2). Поэтому полезно рассмотреть логарифм функции распределения, который является уже аддитивной функцией для  независимых подсистем

,                                                    (I.4.3)

Из этого равенства следует, что  выражается только через аддитивные интегралы движения, которых, как известно, всего семь: энергия , импульс  и момент импульса . Поэтому для функции статистического распределения имеем

                                       (I.4.4)

В дальнейшем мы не будем рассматривать прямолинейное движение как целого и ее  вращение, т.е. положим , . Тогда функция распределения выражается только через гамильтониан:

            (I.4.5)

Здесь

                                                   (I.4.6)

- обеспечивающий нормировку статистический интеграл,

                                                      (I.4.7)

- свободная энергия Гельмгольца, а  - модуль распределения. Если гамильтониан системы не ограничен сверху, как это, вообще говоря, и бывает, то для сходимости нормировочного интеграла (I.4.6) необходимо, чтобы , так что абсолютная температура положительна, .

Если функция статистического распределения задана в виде (I.4.5), то говорят, что ансамбль канонически распределен, а само распределение называют каноническим распределением Гиббса (сам Дж. В. Гиббс называл такое распределение просто каноническим).

Если привести в контакт две системы, канонически распределенные с одинаковым модулем , то объединенная система также будет в термодинамическом равновесии с тем же , если :

     .

Если же , то при таком контакте (тонкие пленки, химические реакции) возможно тепловое возмущение, и функция распределения  не факторизуется. Равенство  сразу же следует из сравнения канонического распределения (I.4.5) с распределением Максвелла.

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

19300. Защита информации в сетях Windows 20000 2.2 MB
  Лекция 15 Защита информации в сетях Windows 20000 Защита информации в сетях Windows 2003 предполагает использование локальной политики безопасности на рабочих станциях и системы безопасности обеспечиваемой Active Directory по доступу к ресурсам домена или доменов. В Windows 2003 опреде
19301. Интернет-приложения. Средства телекоммуникаций. Поисковые машины. Новостные ленты. Интернет-магазины. Электронная коммерция 607 KB
  Лекция 16 Интернетприложения. Средства телекоммуникаций. Поисковые машины. Новостные ленты. Интернетмагазины. Электронная коммерция Интернетприложения. Средства телекоммуникаций Наиболее распространенные современные средства общения для своей работы использ
19302. Конденсаторы. Система условных обозначений и маркировки конденсаторов 163 KB
  Лекция № 5 Конденсаторы 1. Классификация основные электрические характеристики и параметры 2. Система условных обозначений и маркировки конденсаторов 1. Классификация и основные характеристики Основные понятия Конденсаторы лат Condenso сгущать уплотнят...
19303. Резисторы. Устройство, характеристики и параметры нелинейных резисторов 88.5 KB
  Лекция 4 2.1 Резисторы 1. Классификация и параметры резисторов 2. Устройство и применение линейных резисторов 3. Устройство характеристики и параметры нелинейных резисторов 1. Классификация и параметры резисторов Основные понятия Термин резистор про
19304. Основы техники измерений параметров технических систем 455.75 KB
  Модели измерения и основные постулаты метрологии. Виды и методы измерений. Погрешности измерений. Нормирование погрешностей и формы представления результатов измерений. Внесение поправок в результаты измерений. Оценка не исключенной составляющей систематической погрешности измерений. Выявление и исключение грубых погрешностей (промахов). Качество измерений.
19305. Полупроводниковый диод. Выпрямительные и импульсные диоды 248.5 KB
  Содержание лекции Общее устройство классификация и системы обозначений диодов. Полупроводниковыми диодами называют электро-преобразовательные полупроводниковые приборы с одним электрическим переходом имеющие два вывода. Основу полупроводникового...
19306. Полупроводниковые светодиоды и лазеры 156.5 KB
  Содержание лекции. Полупроводниковые лазеры. По своей сущности полупроводниковые лазеры подразделяются на два основных типа: инжекционные; неинжекционные. Инжекционные лазеры. Инжекционный лазер представляет собой полупроводниковый двухэле...
19307. Магнитомягкие материалы 363.5 KB
  Магнитомягкие материалы Магнитомягкие материалы это такие материалы которые обладают малой корцетивной силой Нс и высокой магнитной проницаемостью μ. Они характеризуется узкой петлей гистерезиса и малыми потерями на пёремагничивание и но используются в основном в...
19308. КЛАССИФИКАЦИЯ И ОСНОВНЫЕ СВОЙСТВА ПРОВОДНИКОВЫХ МАТЕРИАЛОВ 52 KB
  КЛАССИФИКАЦИЯ И ОСНОВНЫЕ СВОЙСТВА ПРОВОДНИКОВЫХ МАТЕРИАЛОВ Общие сведения Важнейшими применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы. Из металлических проводниковых материалов могут быть выделены металлы высокой про...