18988

Распределение Максвелла

Лекция

Физика

Лекция I 1. Распределение Максвелла. Статистическая физика изучает свойства макроскопических тел т.е. систем состоящих из огромного числа частиц. Например для аудитории с размерами учитывая что каждый моль воздуха занимает объем 224 л и содержит число Авогадро мол

Русский

2013-07-11

326.5 KB

2 чел.

Лекция I

1. Распределение Максвелла.

Статистическая физика изучает свойства макроскопических тел, т.е. систем, состоящих из огромного числа частиц. Например, для аудитории с размерами , учитывая, что каждый моль воздуха занимает объем 22,4 л и содержит  (число Авогадро) молекул, получаем впечатляющее число  частиц воздуха в такой аудитории.

К.Дж. Максвелл был, по-видимому, одним из первых, кто понял, что не нужно прослеживать судьбу каждой молекулы и предложил вероятностное описание таких систем. Следует помнить, что квантовая механика была открыта спустя более чем полвека. Распределение Максвелла по импульсам

                                    (I.1.1)

определяет вероятность найти частицу идеального газа при температуре  с импульсом  в элементе объема импульсного пространства . Здесь масса частицы, постоянная Больцмана:

                                                   (I.1.2)

Из распределения (I.1.1) непосредственно следует и распределение по энергиям частиц . Учитывая, что трехмерный объем шара с радиусом  равен , получаем

                                        (I.1.3)

Положение максимума функции ,  следует из равенства

                              (I.1.4)

Распределение (I.1.3) представим в форме

                 (I.1.5)

где удобная для дальнейшего безразмерная переменная (см. Рис II.1). Отсюда для среднего значения  сразу же получаем

                                      (I.1.6)

Здесь гамма-функция Эйлера: , . Поскольку

,    ,     ,     ,     (I.1.7)

то для среднего значения, флуктуации  и относительной флуктуации  энергии находим известные результаты

                                    (I.1.8)

2. Ансамбль Гиббса.

Идею Максвелла о вероятностном описании Джозайя Виллард Гиббс (1839 – 1903) распространил на произвольные механические системы с большим числом степеней свободы. В классической теории развитие таких систем во времени определяется уравнениями Гамильтона

                            (I.2.1)

где число степеней свободы. Здесь  и  - обобщенные координаты и импульсы,  - гамильтониан (точнее функция Гамильтона) системы. В уравнениях (I.2.1) приняты обозначения , . Чтобы обойти практически неразрешимую проблему интегрирования уравнений (I.2.1), Гиббс предложил рассматривать большое число  (фактически бесконечное) идентичных механических систем с гамильтонианом  – ансамбль Гиббса. Тогда вероятность найти такую систему в элементе фазового пространства  выражается через функцию статистического распределения:

,                               (I.2.2)

Если удается найти такую функцию, то среднее значение любой физической величины  можно вычислить “простым” интегрированием по фазовому пространству:

                                    (I.2.3)

Чтобы указать явный вид функции статистического распределения, Гиббс использовал несколько соображений. Вот первое из них.

3. Теорема Лиувилля.

Хорошо известно, что развитие во времени является каноническим преобразованием:

,                                    (I.3.1)

с производящей функцией , так что

                                                        (I.3.2)

Поскольку такое каноническое преобразование можно рассматривать как замену переменных, то при развитии системы во времени сохраняется фазовый объем:

                                (I.3.3)

Формально это можно получить так

,                                                         (I.3.4)

где

- якобиан преобразования. Вычислим его.

Учитывая (I.3.2), получаем

,

откуда и следует (I.3.3), т.е. теорема Лиувилля.

Рассмотрим теперь некоторый объем фазового пространства , содержащий  систем из их полного числа .

С течением времени эти  систем займут фазовый объем ,

Поэтому

                                                        (I.3.5)

Если рассмотреть достаточно малый объем , то функция  в нем практически постоянна и

.

Отсюда согласно (I.3.3) немедленно заключаем

,                                                       (I.3.6)

т.е. функция статистического распределения является интегралом движения. Это утверждение также называют теоремой Лиувилля.

Этот важный результат можно получить и непосредственно. Рассмотрим элемент фазового пространства  и вычислим убыль систем из него с течением времени (см. Рис. I.1, точками изображены системы, находящиеся в этом объеме).

  

                                         Рис. I.1

Убыль через отрезок , связанная с изменением координаты

Убыль через отрезок  за счет изменения импульса  

Полная убыль точек из фазового объема  

                                                     (I.3.7)

Это уравнение является непосредственным обобщением уравнения непрерывности для идеальной жидкости

                                                          (I.3.8)

Учитывая уравнения Гамильтона (I.2.1) в правой части уравнения (I.3.7), получаем

                     (I.3.9)

Где

- скобки Пуассона. Так как полная производная согласно (I.3.9)

,                                              (I.3.10)

то это означает, что функция статистического распределения является интегралом движения, в полном соответствии с утверждением (I.3.6).

4. Каноническое распределение Гиббса.

Изучение зависимости функции распределения  от времени, т.е. решение уравнения (I.3.10), исключительно сложная задача и является предметом исследования физической кинетики, которой посвящен последний Х том курса Л.Д.Ландау и Е.М.Лифшица. Ее результаты не всегда удовлетворительны, достаточно вспомнить прогнозы метеослужбы. Задача нашего курса менее амбициозная – она состоит в исследовании стационарных ситуаций, когда после окончания релаксационных процессов система приходит в состояние так называемого термодинамического равновесия. Итак, в дальнейшем

                                     (I.4.1)

В этом случае возникают дополнительные упрощения. Действительно, одна только теорема Лиувилля не слишком конструктивна. Функция статистического распределения  является интегралом движения и, следовательно, может быть выражена только через интегралы движения механической системы. Однако их число равно , что не очень обнадеживает. Ситуацию кардинально меняет соображение, что  является мультипликативной функцией:

,                                                           (I.4.2)

где  и  - функции распределения для двух независимых систем, а  - для объединенной системы. В этом случае  и , так что справедливо равенство (I.4.2). Поэтому полезно рассмотреть логарифм функции распределения, который является уже аддитивной функцией для  независимых подсистем

,                                                    (I.4.3)

Из этого равенства следует, что  выражается только через аддитивные интегралы движения, которых, как известно, всего семь: энергия , импульс  и момент импульса . Поэтому для функции статистического распределения имеем

                                       (I.4.4)

В дальнейшем мы не будем рассматривать прямолинейное движение как целого и ее  вращение, т.е. положим , . Тогда функция распределения выражается только через гамильтониан:

            (I.4.5)

Здесь

                                                   (I.4.6)

- обеспечивающий нормировку статистический интеграл,

                                                      (I.4.7)

- свободная энергия Гельмгольца, а  - модуль распределения. Если гамильтониан системы не ограничен сверху, как это, вообще говоря, и бывает, то для сходимости нормировочного интеграла (I.4.6) необходимо, чтобы , так что абсолютная температура положительна, .

Если функция статистического распределения задана в виде (I.4.5), то говорят, что ансамбль канонически распределен, а само распределение называют каноническим распределением Гиббса (сам Дж. В. Гиббс называл такое распределение просто каноническим).

Если привести в контакт две системы, канонически распределенные с одинаковым модулем , то объединенная система также будет в термодинамическом равновесии с тем же , если :

     .

Если же , то при таком контакте (тонкие пленки, химические реакции) возможно тепловое возмущение, и функция распределения  не факторизуется. Равенство  сразу же следует из сравнения канонического распределения (I.4.5) с распределением Максвелла.

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

64787. КРИМІНАЛЬНЕ ПОКАРАННЯ ТА РЕАЛІЗАЦІЯ ЙОГО ФУНКЦІЙ 296.5 KB
  Проблеми інституту покарання в умовах розбудови правової держави в Україні привертають до себе увагу не тільки фахівців але й широкого загалу. Перш ніж у людини з’явилася перша іскра уразумения чому і для чого існує покарання вказував...
64788. Підвищення технічного рівня гідроагрегату обертання шляхом удосконалення гідравлічної системи керування 1.17 MB
  Для досягнення поставленої мети були сформульовані такі завдання: розробити принципову схему гідроагрегату верстата для намотування обмоток електродвигунів; розробити математичну модель робочого процесу гідроагрегату обертання на основі декомпозиції його на складові...
64789. Засоби захисту й реалізації конституційних трудових прав працівників 167 KB
  Основним пріоритетом правової, соціальної, демократичної держави є ефективне забезпечення реалізації й захисту прав та свобод людини і громадянина, а також приведення їх у відповідність з європейськими та світовими стандартами.
64790. Інформаційне забезпечення впровадження освітніх інновацій у систему підвищення кваліфікації педагогічних працівників 199 KB
  Україна спроможна забезпечити якісну освіту своїх громадян завдяки активній участі у глобалізаційних процесах, інкорпорації до інформаційного суспільства, інтеграції в світову спільноту, стабільному науково-технічному прогресу...
64791. ФІЗІОЛОГІЧНИЙ СТАН ОРГАНІЗМУ ПЕРЕПЕЛІВ ЗА РІЗНОГО РІВНЯ ЖИРУ ТА ВІТАМІНУ Е В РАЦІОНІ 692 KB
  Особливо це стосується впливу енергетичного живлення та рівня вітаміну Е в раціоні на функціональний стан і резистентність організму перепелів систему травлення та рівень обмінних процесів. Цим зумовлена науковопрактична актуальність поглибленого дослідження...
64792. ВЗАЄМНА ДИФУЗІЯ ТА ЕВОЛЮЦІЯ СТРУКТУРИ В ЛОКАЛЬНО-НЕОДНОРІДНИХ ПОТРІЙНИХ СПЛАВАХ 4.04 MB
  Виділення найраціональнішого методу визначення матриці коефіцієнтів дифузії для потрійних систем який значно спрощує експеримент є досить актуальною проблемою теорії дифузії. Тому оцінка точності методик визначення матриці коефіцієнтів дифузії для потрійних систем...
64793. БІОТЕХНІЧНІ ОСОБЛИВОСТІ ПІДРОЩУВАННЯ ЛИЧИНОК КОРОПОВИХ РИБ ЗА ОБМЕЖЕНОГО ВОДОПОСТАЧАННЯ (НА ПРИКЛАДІ ВАТ “СКВИРАСІЛЬРИБГОСП”) 498.5 KB
  В цьому випадку вирощувальні стави наповнюються водою ранньою весною і не забезпечують необхідних технологічних умов для ефективного вирощування рибопосадкового матеріалу безпосередньо від €œзаводських личинок тому що до цього моменту у вирощувальних ставах вже накопичується...
64794. Організаційно-економічний механізм оцінки ділової репутації промислового підприємства 335.5 KB
  Процеси приватизації, вторинного перерозподілу власності, утворення нових і переформування крупних корпоративних структур, що відбуваються в Україні, зумовлюють необхідність врахування вартості ділової репутації під час оцінки вартості підприємств як цілісних майнових комплексів.
64795. ПОЛІТИЧНІ ПАРТІЇ ЯК СУБ’ЄКТИ ДЕРЖАВНОЇ ПОЛІТИКИ В СУЧАСНІЙ УКРАЇНІ 355.5 KB
  Дослідження влади та управління неможливе без аналізу діяльності політичних партій у владних структурах. Тому аналіз впливу інституту політичних партій на державну політику та управління важливий для підвищення їх результативності.