18992

Работа и тепло

Лекция

Физика

Лекция V 1. Работа и тепло. Обсудим физический смысл основного термодинамического тождества V.1.1 Поскольку давление это средняя сила отнесенная к единице площади а изменение объема то второе с...

Русский

2013-07-11

268.5 KB

2 чел.

Лекция V

1. Работа и тепло.

Обсудим физический смысл основного термодинамического тождества

                                                              (V.1.1)

Поскольку давление – это средняя сила, отнесенная к единице площади, , а изменение объема , то второе слагаемое в (V.1.1)

                                                                    (V.1.2)

является работой, производимой над телом. Поэтому

,                                                          (V.1.3)

т.е. та часть энергии, которая сообщается телу не в виде работы, называется теплом. Тогда основное тождество термодинамики принимает вид:

                                      (V.1.4)

т.е. является законом сохранения энергии и составляет содержание Первого начала термодинамики. Нулевым началом термодинамики называют иногда то обстоятельство, что в термодинамическом равновесии температура одинакова по всей системе.

Для интерпретации микроскопического смысла понятия “тепло” посмотрим, что будет происходить со средней энергией  

,     ,

если адиабатически менять объем системы. Дифференциал средней энергии равен

                                                                      (V.1.5)

При медленном (адиабатическом) изменении объема квантовые числа состояния не меняются, не меняется число микроскопических состояний и, следовательно, не меняется энтропия. Согласно (IV.4.13) давление

                                            

так что работа

                                   (V.1.6)

обусловлена изменением энергии  микросостояний. Сравнение уравнений (V.1.4), (V.1.5) и (V.1.6) показывает, что тепло

                                                    (V.1.7)

обусловлено изменением вероятностей микроскопических состояний. В этом состоит микроскопический смысл тепловой энергии.

Следует подчеркнуть, что в отличие от полной энергии  работа и тепло не являются однозначными функциями состояния. Математически это выражается в том, что ни , ни  не являются полными дифференциалами. Действительно,

,                                              (V.1.8)

т.е. при круговом (циклическом) процессе энергия не меняется. В то же время из тождества (V.1.4) не следует, вообще говоря, равенства нулю изменение тепла или работы по отдельности,

                                                         (V.1.9)

Широко известными примерами, подтверждающими неравенство (V.1.9) являются тепловые машины, холодильники и тому подобные устройства.

Согласно (V.1.3) при обратимых процессах

                                                              (V.1.10)

т.е. при сообщении телу тепла увеличивается его энтропия. Однако, при необратимых процессах энтропия может возрастать не только за счет тепла, а самопроизвольно, т.е.

                                                               (V.1.11)

В термодинамике рассматриваются только равновесные обратимые процессы.

Поскольку энергию тела (ее иногда называют внутренней энергией) нельзя однозначно разделить на тепловую энергию и работу, то при одном и том же изменении температуры тела количество подводимого тепла будет зависеть от характера термодинамического процесса. В частности следует различать теплоемкость

                                        (V.1.12)

при постоянном объеме от теплоемкости

                                         (V.1.13)

при постоянном давлении.

2. Термодинамические потенциалы.

Если тело теплоизолировано, , и рассматриваются только равновесные процессы, то , и

                                                       (V.2.1)

т.е. изменение энергии равно работе, которая считается положительной, если она совершается над телом. Такой процесс называют адиабатическим или изоэнтропическим. Найдется ли такая функция состояния, изменение которой давало бы прирост тепла?.

                                      (V.2.2.)

Это равенство справедливо только при постоянном давлении, , т.е. для изобарического процесса. Тепловая функция  (или энтальпия)

     (V.2.3)

постоянна для теплоизолированного тела (при ), и является функцией независимых переменных  и ,

                            (V.2.4)

Поэтому теплоемкость при постоянном давлении

                                                  (V.2.4а)

в то время как

                                                  (V.2.4б)

Равенство (V.2.4) оправдывает название функции . Посмотрим, найдется ли такая термодинамическая функция, изменение которой давало бы в отличие от (V.2.1) работу не в адиабатическом процессе. Действуя аналогично (V.2.2) имеем

  (V.2.5)

Это равенство справедливо только при постоянной температуре, т.е. для изотермического процесса работа равна изменению свободной энергии Гельмгольца

,      (V.2.6)

которая является функцией независимых переменных  и ,

  (V.2.7)

Соотношения (V.2.3) и (V.2.6), с помощью которых переходят от одних термодинамических потенциалов к другим, называются преобразованиями Лежандра. Переход к последней оставшейся паре независимых переменных  и осуществляется с помощью преобразования

   (V.2.7а)

определяющего термодинамический потенциал Гиббса (иногда функцию  называют свободной энергией Гиббса).

Для запоминания термодинамических равенств Борн придумал мнемоническое правило, требующее лишь рудиментарного знания английского языка:

Sun – солнце,             Tree – дерево        

Valley – долина,       Path – путь                       (V.2.8)

Заглавные буквы этих слов отвечают стандартным обозначениям возможных независимых переменных, которые следует расположить на концах диаметров окружности и провести стрелки, см. Рис. VI.1, в соответствии с тем, что

«Солнце освещает дерево», а

Рис. V.1                                             «Путь ведет в долину».

После этого между этими символами написать в алфавитном порядке обозначения термодинамических потенциалов, начиная с правого верхнего квадранта: . Независимыми переменными для этих потенциалов являются переменные между которыми они расположены:                                                                                  (V.2.9)

                                      (V.2.10)

                                     (V.2.11)

                                       (V.2.12)

При этом знак «минус» стоит перед дифференциалом той независимой переменной, в которую упирается стрелка на Рис. V.1.

Важное физическое значение свободной энергии Гельмгольца  и потенциала Гиббса  состоит в следующем. При необратимых (самопроизвольных) процессах

    

поэтому

,     (V.2.13)

причем энтропия  замкнутой системы (, ) максимальна в равновесии.

Если самопроизвольный процесс протекает при постоянной температуре (изотермически) и постоянном объеме (, изохорический процесс), тогда согласно (V.2.13)

    (V.2.14)

Таким образом, в ходе процесса свободная энергия  уменьшается и достигает минимума при установлении равновесия.

Аналогично при  и  (изобарический процесс) имеем

,    (V.2.15)

т.е. в равновесии потенциал Гиббса  минимален.

3. Термодинамические преобразования.

Уравнением состояния называется соотношение

     (V.3.1)

Оно известно теоретически, если удается вычислить свободную энергию

     (V.3.2)

Через свободную энергию выражается и теплоемкость :

     (V.3.3)

Если известно уравнение состояния, то можно найти зависимость  от объема

(V.3.4)

При получении этой формулы было использовано одно из соотношений Максвелла

    (V.3.5)

которое является следствием равенств

Можно получить немало соотношений такого типа. Выразим для примера разность  через уравнение состояния. В переменных  имеем

отсюда окончательно получаем

   (V.3.6)

В переменных  имеем

Учитывая, что

получаем

   (V.3.7)

Вводя коэффициент теплового расширения

    (V.3.8)

и изотермическую сжимаемость

разность (V.3.7) представим в виде

                                           (V.3.9)

Это неравенство является следствием положительности изотермической сжимаемости, что можно строго доказать, рассматривая флуктуацию числа частиц, , которая пропорциональна , см. ниже лекцию VII.

Равенство в (V.3.9) достигается, если равен нулю коэффициент теплового расширения. Такое равенство может достигаться у некоторых веществ только для отдельных значений температуры. Так, для воды  при , когда ее плотность максимальна.

Для идеального газа

,                                   (V.3.10)

Поэтому для одного моля газа

     (V.3.11)

– соотношение Майера,  - газовая постоянная.

 

 

 

 

 

 

 

 


 

А также другие работы, которые могут Вас заинтересовать

31221. Метод отраженных волн 33 KB
  Метод отраженных волн. Метод отраженных волн MOB наиболее эффективный и развитый метод сейсморазведки применяемый в наибольших объемах при поисках и детальной разведке месторождений нефти газа и ряда других полезных ископаемых на суше и на море. Упругие волны в MOB возбуждают с помощью проведения взрывов в неглубоких скважинах или действием специальных невзрывных источников на поверхности земли. На поверхности земли регистрируются отраженные волны от достаточно протяженных геологических границ на которых заметно меняется волновое...
31222. Метод преломленных волн 29.5 KB
  В методе преломленных волн МПВ обычно регистрируются и анализируются головные рефрагированные и преломленнорефрагированные волны. Главными достоинствами МПВ являются: большой диапазон доступных для исследования глубин от первых метров до 10 15 и более километров возможность определения граничной скорости в слоях малая зависимость от помех со стороны кратно отраженных и поверхностных волн. Усовершенствованная модификация МПВ корреляционный метод преломленных волн КМПВ был предложен в СССР в конце 30х годов группой геофизиков под...
31223. Метод проходящих волн (скважинная сейсморазведка) 33 KB
  Позднее в СССР была разработана аппаратура и технология проведения вертикального сейсмического профилирования ВСП СССР Е.Основой для анализа волнового поля по материалам ВСП являются сводные сейсмограммы по стволу скважины для каждого пункта взрыва. По принципу анализа зарегистрированного волнового поля выделяют две основные модификации ВСП скалярную и векторную поляризационную модификацию ПМ ВСП. По технике записи различают однокомпонентную модификацию ВСП регистрируется только вертикальная компонента поля и трехкомпонентную ПМ ВСП.
31224. Источники упругих колебаний 30 KB
  Основным типом источников сейсмических колебаний при морских работах в настоящее время являются пневматические излучатели которые чаще всего называют воздушными пушками. Поэтому для таких источников очень важно чтобы второй импульс был как можно менее интенсивным в сравнении с первым. Комплекс мер который обычно применяют для исключения влияния повторных ударов схлопывающихся воздушных пузырей является группирование источников различной емкости и выбор оптимальной глубины и буксирования. Получающийся в результате короткий импульс создает...
31225. Анализ потенциально опасных и вредных факторов, воздействующих на пользователя ЭВМ 2.48 MB
  Возможности применения компьютера в учебном процессе, весьма многообразны. Он может служить для моделирования изучаемых явлений или систем, для реализации учебных игр, применяться для выполнения вычислений, для редактирования текстов, в качестве различного рода тренажеров.
31226. ТЕХНОЛОГИИ СОЦИАЛЬНОЙ РАБОТЫ С НАРКОЗАВИСИМЫМИ ДЕТЬМИ 1.19 MB
  Сторонники этого подхода убеждены что знания об употреблении психоактивных веществ и их последствиях будет являться эффективным толчком для формирования здорового поведения и отказа от наркотиков. Употребление наркотиков объясняется важнейшей ролью социальной среды в развитии человека которая является источником обратной связи для личности рассматривается как система поощрений и наказаний. Представители досугового альтернативного подхода считают что профилактика наркомании заключается в развитии альтернативной употреблению наркотиков...
31227. Особенности производства в арбитражном суде по отдельным категориям дел 357 KB
  Целью данной работы является проведение комплексного анализа законодательства, регламентирующего рассмотрение в арбитражном суде дел в порядке упрощенного производства, его особенностей, выявление на основе такого анализа проблем применения положений арбитражного процессуального законодательства в указанной области исследования, а также возможности его совершенствования.
31228. Виндовс Мувие Макер (Windows Movie Maker) 864.5 KB
  В диалоговом окне Автозапуск которое отображается при включении видеокамеры щелкните Импорт видео. Выберите место сохранения видеофайла в списке Импортировать в или щелкните Обзор для выбора другого места. В списке Формат выберите один из следующих форматов нового видеофайла и щелкните Далее: Для создания единого файла с типом используемым цифровым видеоустройством по умолчанию например файла AVI или DVAVI выберите Формат AVI единичный файл. Щелкните Импортировать видеокассету целиком на компьютер и нажмите кнопку Далее.
31229. Создание рекламного сувенирного продукта, способного эффективно воздействовать 6.62 MB
  Относительно предмета нашего исследования под мечтой мы понимаем стремление большинства компаний иметь статус успешных процветающих предприятий. В свете узкой направленности нашего научного изыскания мы соотнесли эти факторы с задачами проектирования и изготовления эффективной сувенирной продукции. Таким образом нам удалось выявить особенности этих механизмов относительно предмета нашего исследования: в то время как реклама привлекает внимание потребителя с помощью ярких образов сувенирная продукция призвана еще и напоминать ему о...