18995

Большое каноническое распределение Гиббса

Лекция

Физика

Лекция VIII 1. Большое каноническое распределение Гиббса. Рассмотрим малую часть микроканонического ансамбля см. III.1.1 которая может обмениваться с термостатом не только энергией тепловой контакт но и частицами. Энергия этой квазизамкнутой подсистемы зависит от объ...

Русский

2013-07-11

309 KB

9 чел.

Лекция VIII

1. Большое каноническое распределение Гиббса.

Рассмотрим малую часть микроканонического ансамбля (см. (III.1.1)), которая может обмениваться с термостатом не только энергией (тепловой контакт), но и частицами. Энергия этой квазизамкнутой подсистемы зависит от объема, от числа частиц  и квантовых чисел  при фиксированном .

 

                    ,        

                    ,       

                    ,          

Найдем вероятность  найти подсистему в квантовом состоянии . В соответствии с общими правилами необходимо просуммировать вероятность  по всем состояниям термостата,

      Рис. VIII.1                           совместным с состоянием подсистемы :

                 (VIII.1.1)

Здесь и далее используем энергетическую систему единиц, . Разлагая энтропию термостата по малым добавкам  и , имеем

                    (VIII.1.2)

Вводя обозначение

                                             (VIII.1.3)

и вспоминая, что , получаем распределение

                                             (VIII.1.4)

Величина  называется химическим потенциалом, а нормировочная константа  - большой статистической суммой,

                                                    (VIII.1.5)

Большое каноническое распределение (VIII.1.4) представляют также в форме

,                                      (VIII.1.6)

Здесь   – термодинамический потенциал.

Отметим, что большое каноническое распределение Гиббса соответствует максимуму информационной энтропии (IV.1.1) при заданных значениях средней энергии  и среднего числа частиц . В этом можно убедиться, используя, как и прежде, метод неопределенных множителей Лагранжа (см. Лекцию IV).

2. Основное термодинамическое тождество для большого канонического ансамбля Гиббса.

Учитывая значения частных производных

                             (VIII.2.1)

см. равенства (III.3.1), (IV.4.12) и (VIII.1.3), находим дифференциал энтропии:

                                               (VIII.2.2)

и основное термодинамическое тождество для систем с переменным числом частиц

,                                                  (VIII.2.3)

которое можно представить в виде

,                                                 (VIII.2.4)

Таким образом, изменение внутренней энергии тела складывается из тепла , переданного системе, механической работы , произведенной над системой и химической работы               

,                                                           (VIII.2.5)

т.е. вкладом, обусловленным переходом частиц из термостата. Как следует из (VIII.2.3), химический потенциал

                                                       (VIII.2.6)

– это энергия, приходящаяся на каждую частицу, вносимую в систему при неизменных энтропии и объеме.

3. Условия термодинамического равновесия.

Будем исходить из равенства (VIII.2.2) для изменения энтропии тела.

1) При тепловом контакте двух тел, образующих замкнутую систему, , ,

,    ,                                  (VIII.3.1)

                                        (VIII.3.2)

Отсюда, согласно закону возрастания энтропии замкнутой системы, получаем

                                                 (VIII.3.3)

Если , то , т.е.тепло переходит от более нагретого тела к менее нагретому. В равновесии

,                                                           (VIII.3.4)

т.е. температура постоянна по всей системе (“нулевое” начало термодинамики).

2) Механическое равновесие: , . Вместо (VIII.3.1) теперь имеем

,    ,                                   (VIII.3.5)

Поэтому условия экстремума энтропии относительно  дает

                              (VIII.3.6)

Предполагая, что выполнено условие теплового равновесия (VIII.3.4), получаем

,                                                           (VIII.3.7)

Хотя равенство давлений при механическом равновесии формально получено при условии равенства температур, однако реально такое равновесие наступает быстрее, чем выравнивается температура. Примером могут служить ураганы.

3) Химическое равновесие по числу частиц. В этом случае ,  и

,    ,                                  (VIII.3.8)

                                (VIII.3.9)

Из условия возрастания энтропии в предположении  получаем

                                                 (VIII.3.10)

Таким образом, при постоянной температуре частицы переходят из области с большим значением химического потенциала в область с меньшим его значением:  при . В равновесии                 

,                                                     (VIII.3.11)

т.е. химический потенциал постоянен по всей системе. Конечно, химические реакции могут протекать неравновесно, примером могут служить взрывы.

4. Термодинамические равенства для большого канонического ансамбля.

Учитывая определение информационной энтропии (IV.1.1), получаем

,                  (VIII.4.1)

,                                                         (VIII.4.2)

.                                                 (VIII.4.3)

Для дифференциалов термодинамических потенциалов имеем

,                                                        (VIII.4.4)

,                                                      (VIII.4.5)

,                                                        (VIII.4.6)

,                                                     (VIII.4.7)

,                                                     (VIII.4.8)

Таким образом, потенциал  является функцией независимых переменных .

Все термодинамические величины можно разделить на две группы: экстенсивные, которые пропорциональны размерам системы, и интенсивные, независящие от объема и числа частиц. К первым относятся все термодинамические потенциалы, энтропия, объем и число

частиц:   

                                                                           (VIII.4.9)

Согласно условиям термодинамического равновесия, интенсивными переменными являются

                                                               (VIII.4.10)

см. равенства (VIII.3.4) (VIII.3.7) (VIII.3.10). Интенсивной величиной, очевидно, является отношение любых экстенсивных величин.

Как следует из (VIII.4.7) термодинамический потенциал Гиббса

                                                         (VIII.4.11)

является функцией интенсивных переменных  и числа частиц . Поскольку  - экстенсивная величина, то ее можно представить в виде

,                                                          (VIII.4.12)

где  - некоторая функция, зависящая только от температуры и давления. С другой стороны, согласно (VIII.4.7)

                                                          (VIII.4.13)

Поэтому химический потенциал

                                                       (VIII.4.14)

- это энергия Гиббса, приходящаяся на одну частицу. Учитывая соотношение

получаем

      или                               (VIII.4.15)

5. Флуктуации числа частиц.

Будем исходить из определения большой статистической суммы

                                          (VIII.5.1)

Дифференцируя (VIII.5.1) по  при фиксированных  и , имеем

                               (VIII.5.2)

Отсюда непосредственно следует, что

                                                   (VIII.5.3)

Дифференцируя (VIII.5.2) еще раз, получаем

,              (VIII.5.4)

так что , и флуктуация частиц равна

                          (VIII.5.5)

Преобразуем производную в правой части (VIII.5.5) следующим образом (см. (VIII.4.8))

           (VIII.5.6)

Но число частиц – экстенсивная величина, так что

                           (VIII.5.7)

Поэтому     

                           (VIII.5.8)

При переходе к последнему равенству было использовано соотношение

                            (VIII.5.9)

т.е. плотность числа частиц , будучи выражена через температуру и давление, не зависит ни от каких экстенсивных параметров. Поэтому дифференцирование плотности по давлению при постоянном объеме эквивалентно дифференцированию при постоянном числе частиц. Окончательно из (VIII.5.8) получаем

,          ,                  (VIII.5.10)

где - изотермическая сжимаемость. Таким образом, для флуктуации (VIII.5.5) имеем

                                                        (VIII.5.11)

Так как квадратичная флуктуация неотрицательна, изотермическая сжимаемость  положительна или равна нулю. Поскольку сжимаемость  является интенсивной величиной, то для относительной флуктуации числа частиц имеем:

,                                    (VIII.5.12)

Поэтому с учетом (IV.3.7) заключаем, что микроканоническое, каноническое и большое каноническое распределения для макроскопических тел эквивалентны.


 

А также другие работы, которые могут Вас заинтересовать

8498. Тепловой и динамический расчет бензинового двигателя внутреннего сгорания ВАЗ-2103 458.22 KB
  Тепловой и динамический расчет бензинового двигателя внутреннего сгорания ВАЗ-2103 Введение Тепловой расчет двигателя служит для определения параметров рабочего тела в цилиндре двигателя, а также оценочных показателей рабочего процесса, для оценки м...
8499. Древнеиндийская философия 134 KB
  Древнеиндийская философия Индийская культура является одной из самых древних на Земле. Древнейшие письменные источники датируются III тысячелетием до н.э. Чаще всего тексты высекались на камне, металлических пластинах, дереве, а также на керамике. ...
8500. Китайская хохлатая собака 1.28 MB
  Китайская хохлатая собака. С тех пор как в 1965 году китайская хохлатая собака была вновь завезена в Великобританию, интерес к этой породе значительно вырос. Тщательное выведение породы и расширение знаний в области генетики...
8501. Жизнь и творчество Ду Фу 68 KB
  Восточные философские и религиозные взгляды существенно отличаются от западноевропейских. Их объединяют целостное восприятие мира, отсутствие сосредоточенности на человеке. Мерой всего, объектом поклонения выступает природа, в которой человек полн...
8502. Китайская мечта населения Северо-Востока КНР 109.5 KB
  Китайская мечта населения Северо-Востока КНР В настоящее время, понятие мечта занимает одно из первых мест в рейтинге модных мировых тенденций. И эта тенденция обязана столь стремительному успеху тому, что современное общество дает индивиду зн...
8503. Китайская медицина. Философские основы китайской медицины 88.5 KB
  Китайская медицина. Философские основы китайской медицины. Здоровье - одно из главных достояний человека. Между тем, по мере развития цивилизации растет и число факторов, повреждающих здоровье. Количество болезней, известных современной медицин...
8504. Философские основы китайской медицины. Китайская медицина 273.5 KB
  Китайская медицина. Философские основы китайской медицины. Основной подход: Западная медицина Использование фармакологических препаратов - чужеродных для организма химических веществ. Каждое их применение порождает новые проблемы, т.к. безвредн...
8505. Китайская медицина и зубоврачевание в Тебете, Японии, в арабских государствах 86.5 KB
  Китайская медицина и зубоврачевание в Тебете, Японии, в арабских государствах Вопросы по китайской стоматологии: Великий китайский шёлковый путь (общение с соседними государствами, обмен медицинским опытом) Марко Поло его путешествие Ки...
8506. Китайская мифология 45.5 KB
  Китайская мифология. Черты: комплекс из древнекитайской, даосской, буддийской и позднее народной мифологии мифология Китая существует в виде отдельных фрагментов в : -Шицзин -Шуцзин -И-цзин -Чжуан-цзы -Критические суждения (автор Вань...