18999

Вырожденный бозе-газ

Лекция

Физика

Лекция XII 1. Вырожденный бозегаз. Химический потенциал бозегаза определяется из уравнения X.2.5 XII.1.1 При заданной концентрации будем понижать температуру газа. Поскольку по условию левая часть уравнения XII.1.1 не м

Русский

2013-07-11

309 KB

4 чел.

Лекция XII

1. Вырожденный бозе-газ.

Химический потенциал бозе-газа определяется из уравнения (X.2.5)

                                                (XII.1.1)

При заданной концентрации будем понижать температуру газа. Поскольку по условию левая часть уравнения (XII.1.1) не меняется, то интеграл в правой части должен увеличиваться с уменьшением температуры. Так как химический потенциал бозе-газа отрицателен, , это означает, что  должен уменьшаться при уменьшении . Поэтому при некоторой температуре  решением уравнения (XII.1.1) будет . Температура вырождения  равна

,                                                    (XII.1.2)

где дзета-функция Римана.

В дальнейшем нам понадобится значение более общего интеграла

                                                    (XII.1.3)

Вычисляется он следующим образом:

;

Здесь

                          (XII.1.4)

Возвращаясь к уравнению (XII.1.1) видим, что при  приходим к противоречию. Действительно, химический потенциал не может быть положительным, т.е. интеграл не может стать меньше, чем , в то время как множитель  продолжает уменьшаться, хотя левая часть уравнения постоянна.

Противоречие возникает при переходе от точной формулы (IX.3.6) к уравнению (XII.1.1) с помощью замены (X.2.4)

                                    (XII.1.5)

При такой замене теряется вклад в сумму от слагаемого с , т.е. от основного состояния, которое является определяющим при .

Чтобы найти химический потенциал при  будем исходить из распределения Бозе-Эйнштейна (IX.3.5)

                (XII.1.6)

Полагая как обычно, что для основного состояния , имеем

            (XII.1.7)

Учтем теперь, что в силу бозевости при  заселяется только основное состояние (это явление называют бозе-конденсацией). При этом  является макроскопически большим числом, а следовательно экспонента в знаменателе дроби в (XII.1.7) близка к единице и ее можно разложить в ряд:

    

Отсюда

,                                                    (XII.1.8)

т.е. как и должно быть для бозе-газа . При этом  не только за счет малости температуры, но и вследствие макроскопичности системы, . Поэтому

,                                                    (XII.1.8а)

что оправдывает (с макроскопической точностью) замену  в уравнении (XII.1.1).

Таким образом, при низких температурах полное число бозонов  слагается из числа частиц в основном состоянии  и числа частиц в возбужденных состояниях:

                                (XII.1.9)

Зависимость от температуры определяется при  в основном зависимостью квантового объема  от температуры:

,                                        (XII.1.10)

так как , если

Температуру бозе-конденсации (вырождения) можно определить как температуру, при которой впервые  при повышении температуры от нуля до , т.е. при  заселенность основного состояния не является макроскопической величиной и ей можно пренебречь в сравнении с .

Согласно (XII.1.2) и (XII.1.9) при  имеем

,                                                   (XII.1.11)

так что  при  и  при .

Для фермионов и бозонов с одинаковой массой при одной и той же концентрации имеем

                                        (XII.1.12)

Однако, например, масса  равна приблизительно . Поэтому температура вырождения для гелия при плотности, соответствующей нормальным условиям, согласно (XII.1.2), равна ()

                        (XII.1.13)

Это значение показывает, в частности, почему Нобелевскую премию по физике за 2001 год присудили за достижения в изучении процессов конденсации Бозе-Эйнштейна для разреженных газов и фундаментальные исследования характеристик конденсатов (лауреаты – Эрик Корнелл, Вольфганг Кеттерле и Карл Виман).

Поскольку основное состояние, , не дает вклада в полную энергию, которая определяется только энергиями возбужденных состояний, то при , согласно (X.2.8), имеем

                                   (XII.1.14)

Теплоемкость , а давление

                                            (XII.1.15)

не зависит от объема, а только от температуры.

2. Термодинамические функции идеального бозе-газа.

Пусть, не умаляя общности, статистический вес , тогда согласно (X.2.6) имеем

                            (XII.2.1)

Учитывая разложение            

   

и меняя в (XII.2.1) порядок интегрирования и суммирования, получаем

Вводя обозначение

,                                                         (XII.2.2а)

окончательно получаем

,                                        (XII.2.2)

Химический потенциал , т.е. аргумент функции , при  определяется из уравнения

                          (XII.2.3)

Последнее равенство следует из соотношения

                                                  (XII.2.3а)

Согласно общему соотношению (X.2.9) и формуле (XII.2.2) для полной энергии идеального бозе-газа имеем

                                              (XII.2.4)

а для давления вырожденного бозе-газа (при ) получаем

,                                                   (XII.2.5)

что полностью совпадает с (XII.1.15), поскольку  и .

Дифференцируя (XII.2.4) по температуре при постоянных  и , находим теплоемкость бозе-газа

                               (XII.2.6)

При получении верхнего равенства было учтено соотношение

,                                            (XII.2.7)

которое можно получить, дифференцируя уравнение (XII.2.3). Выражение для теплоемкости полезно представить в виде.

                                (XII.2.8)

Отсюда видно, что при  . Поскольку при функция  при любом , то асимптотически при  (), т.е. для классического больцмановского газа, теплоемкость . В то же время при температуре вырождения ,  т.е. ,   ( при ).

График зависимости теплоемкости (XII.2.8) от температуры показан на рис. XII.1. Кривая теплоемкости имеет излом при , причем сама она в этой точке максимальна. Однако такое поведение теплоемкости – результат пренебрежения взаимодействием бозонов. Ситуация меняется при введении даже слабого взаимодействия. Для сравнения на рис. XII.2 показана зависимость удельной теплоемкости жидкого гелия  вдоль кривой давления насыщенного пара. Учитывая форму экспериментальной кривой, соответствующую температуру называют лямбда-точкой. Экспериментальное значение температуры в рассматриваемом случае , а удельный объем составляет . Указанное на рис. XII.2 поведение теплоемкости всецело связано со свойствами бозонов. В частности сверхтекучесть жидкого  не наблюдается вплоть до температур . Это связано с тем, что спин атомов  равен половине, и они являются фермионами. Однако, при   обнаружена сверхтекучесть , обусловленная спариванием двух атомов гелия-3, так что такая пара ведет себя как бозон. Добавим, что Дейвид Ли, Дуглас Ошерофф и Роберт Ричардсон удостоены Нобелевской премии по физике 1996 года за открытие сверхтекучести гелия-3.

Рис. XII.1                                                          Рис.XII.2

Следует отметить, что зависимость теплоемкости вырожденного бозе-газа  при  связана с нерелятивистским законом дисперсии, , т.е. зависимостью энергии частицы от импульса. Если же закон дисперсии линеен, , то в этом случае . Действительно фазовый объем для квадратичного закона дисперсии и  для линейного закона. Подставляя сюда , приходим к указанным зависимостям теплоемкости от температуры. Примером систем с линейным законом дисперсии могут служить фононы в твердых телах (кванты возбуждения), а также фотоны (кванты электромагнитного поля).


 

А также другие работы, которые могут Вас заинтересовать

17375. Теорії інфляції 89.5 KB
  Теорії інфляції це розділ сучасної економічної науки присвячений аналізу причин виникнення сутності та шляхів подолання інфляції. Розрізняють чотири основні напрями трактування проблем інфляції: неокласичну кейнсіанську соціальну й марксистську. В межах кожн...
17376. Грошово-кредитна система 83.5 KB
  1. Грошова маса та її структуру. Валютна система. 2. Кредит: сутність функції принципи форми. 3. Банки: їх діяльність і операції. Банківська система України. 4.Грошовокредитна політика держави. 1. Грошова маса та її структуру. Валютна система. Грошова система це є фо...
17377. Фінансово-бюджетна політика держави 86 KB
  5. Фінанси: сутність та функції. Фінансова система та її структура. 6 . Податки: функції та види. Природа податку на додану вартість. Ставка оподаткування та крива Лаффера. 7. Держбюджет і джерела його наповнення. Бюджетний дефіцит. Державний борг: зовнішній внутрішній. Д
17378. ОСНОВНІ ПОНЯТТЯ ПОДАТКОВОЇ ТЕРМІНОЛОГІЇ 64.5 KB
  ОСНОВНІ ПОНЯТТЯ ПОДАТКОВОЇ ТЕРМІНОЛОГІЇ В основі вивчення податкової системи і механізмів оподатковування повинне лежати повне і точне розуміння податкової термінології і понять що розкривають суть оподатковування. Розглянемо основні елементи що характеризую
17379. Грошова маса 166 KB
  Грошова маса Г.м. обсяг випущених в обіг паперових грошових знаків банківських та казначейських білетів металевих монет і депозитних грошей грошових засобів на поточних рахунках в банках. У статистиці розвинутих країн існує декілька понять гро
17380. МІЖНАРОДНА ЕКОНОМІКА 75.5 KB
  МІЖНАРОДНА ЕКОНОМІКА Міжнародна економіка іnternational есоnomics це частина теорії ринкової економіки яка вивчає закономірності взаємодії господарюючих суб'єктів різної державної приналежності в області міжнародного обміну товарами руху капіталів факторів виробництва ...
17381. Інтернаціоналізація виробництва 201.5 KB
  1. Інтернаціоналізація виробництва. Міжнародний поділ праці і кооперація праці. 2.Міжнародна торгівля товарами і послугами. Торгівельні барєри. СОТ і ГАТТ. 3.Міжнародна міграція капіталу і робочої сили. Злиття та поглинення економічних субєктів ринку. 4.Іноземніміжн...
17382. Міжнародна трудова міграція та процес міжнародної інвестиційної взаємодії 78.5 KB
  Міжнародна трудова міграція та процес міжнародної інвестиційної взаємодії Міжнародна трудова міграція: суть та причини виникнення. Явище міжнародної міграції населення досить давнє і залишило помітний слід у розвитку людства. Більша частина населення деяких...
17383. Економічна інтеграція 63.5 KB
  Економічна інтеграція Міжнародна економічна інтеграція це вищий рівень розвитку міжнародних економічних відносин коли інтернаціоналізація господарського життя проявляється у переплетінні національних господарств двох або кількох країн та проведенні ними узгодж