18999

Вырожденный бозе-газ

Лекция

Физика

Лекция XII 1. Вырожденный бозегаз. Химический потенциал бозегаза определяется из уравнения X.2.5 XII.1.1 При заданной концентрации будем понижать температуру газа. Поскольку по условию левая часть уравнения XII.1.1 не м

Русский

2013-07-11

309 KB

4 чел.

Лекция XII

1. Вырожденный бозе-газ.

Химический потенциал бозе-газа определяется из уравнения (X.2.5)

                                                (XII.1.1)

При заданной концентрации будем понижать температуру газа. Поскольку по условию левая часть уравнения (XII.1.1) не меняется, то интеграл в правой части должен увеличиваться с уменьшением температуры. Так как химический потенциал бозе-газа отрицателен, , это означает, что  должен уменьшаться при уменьшении . Поэтому при некоторой температуре  решением уравнения (XII.1.1) будет . Температура вырождения  равна

,                                                    (XII.1.2)

где дзета-функция Римана.

В дальнейшем нам понадобится значение более общего интеграла

                                                    (XII.1.3)

Вычисляется он следующим образом:

;

Здесь

                          (XII.1.4)

Возвращаясь к уравнению (XII.1.1) видим, что при  приходим к противоречию. Действительно, химический потенциал не может быть положительным, т.е. интеграл не может стать меньше, чем , в то время как множитель  продолжает уменьшаться, хотя левая часть уравнения постоянна.

Противоречие возникает при переходе от точной формулы (IX.3.6) к уравнению (XII.1.1) с помощью замены (X.2.4)

                                    (XII.1.5)

При такой замене теряется вклад в сумму от слагаемого с , т.е. от основного состояния, которое является определяющим при .

Чтобы найти химический потенциал при  будем исходить из распределения Бозе-Эйнштейна (IX.3.5)

                (XII.1.6)

Полагая как обычно, что для основного состояния , имеем

            (XII.1.7)

Учтем теперь, что в силу бозевости при  заселяется только основное состояние (это явление называют бозе-конденсацией). При этом  является макроскопически большим числом, а следовательно экспонента в знаменателе дроби в (XII.1.7) близка к единице и ее можно разложить в ряд:

    

Отсюда

,                                                    (XII.1.8)

т.е. как и должно быть для бозе-газа . При этом  не только за счет малости температуры, но и вследствие макроскопичности системы, . Поэтому

,                                                    (XII.1.8а)

что оправдывает (с макроскопической точностью) замену  в уравнении (XII.1.1).

Таким образом, при низких температурах полное число бозонов  слагается из числа частиц в основном состоянии  и числа частиц в возбужденных состояниях:

                                (XII.1.9)

Зависимость от температуры определяется при  в основном зависимостью квантового объема  от температуры:

,                                        (XII.1.10)

так как , если

Температуру бозе-конденсации (вырождения) можно определить как температуру, при которой впервые  при повышении температуры от нуля до , т.е. при  заселенность основного состояния не является макроскопической величиной и ей можно пренебречь в сравнении с .

Согласно (XII.1.2) и (XII.1.9) при  имеем

,                                                   (XII.1.11)

так что  при  и  при .

Для фермионов и бозонов с одинаковой массой при одной и той же концентрации имеем

                                        (XII.1.12)

Однако, например, масса  равна приблизительно . Поэтому температура вырождения для гелия при плотности, соответствующей нормальным условиям, согласно (XII.1.2), равна ()

                        (XII.1.13)

Это значение показывает, в частности, почему Нобелевскую премию по физике за 2001 год присудили за достижения в изучении процессов конденсации Бозе-Эйнштейна для разреженных газов и фундаментальные исследования характеристик конденсатов (лауреаты – Эрик Корнелл, Вольфганг Кеттерле и Карл Виман).

Поскольку основное состояние, , не дает вклада в полную энергию, которая определяется только энергиями возбужденных состояний, то при , согласно (X.2.8), имеем

                                   (XII.1.14)

Теплоемкость , а давление

                                            (XII.1.15)

не зависит от объема, а только от температуры.

2. Термодинамические функции идеального бозе-газа.

Пусть, не умаляя общности, статистический вес , тогда согласно (X.2.6) имеем

                            (XII.2.1)

Учитывая разложение            

   

и меняя в (XII.2.1) порядок интегрирования и суммирования, получаем

Вводя обозначение

,                                                         (XII.2.2а)

окончательно получаем

,                                        (XII.2.2)

Химический потенциал , т.е. аргумент функции , при  определяется из уравнения

                          (XII.2.3)

Последнее равенство следует из соотношения

                                                  (XII.2.3а)

Согласно общему соотношению (X.2.9) и формуле (XII.2.2) для полной энергии идеального бозе-газа имеем

                                              (XII.2.4)

а для давления вырожденного бозе-газа (при ) получаем

,                                                   (XII.2.5)

что полностью совпадает с (XII.1.15), поскольку  и .

Дифференцируя (XII.2.4) по температуре при постоянных  и , находим теплоемкость бозе-газа

                               (XII.2.6)

При получении верхнего равенства было учтено соотношение

,                                            (XII.2.7)

которое можно получить, дифференцируя уравнение (XII.2.3). Выражение для теплоемкости полезно представить в виде.

                                (XII.2.8)

Отсюда видно, что при  . Поскольку при функция  при любом , то асимптотически при  (), т.е. для классического больцмановского газа, теплоемкость . В то же время при температуре вырождения ,  т.е. ,   ( при ).

График зависимости теплоемкости (XII.2.8) от температуры показан на рис. XII.1. Кривая теплоемкости имеет излом при , причем сама она в этой точке максимальна. Однако такое поведение теплоемкости – результат пренебрежения взаимодействием бозонов. Ситуация меняется при введении даже слабого взаимодействия. Для сравнения на рис. XII.2 показана зависимость удельной теплоемкости жидкого гелия  вдоль кривой давления насыщенного пара. Учитывая форму экспериментальной кривой, соответствующую температуру называют лямбда-точкой. Экспериментальное значение температуры в рассматриваемом случае , а удельный объем составляет . Указанное на рис. XII.2 поведение теплоемкости всецело связано со свойствами бозонов. В частности сверхтекучесть жидкого  не наблюдается вплоть до температур . Это связано с тем, что спин атомов  равен половине, и они являются фермионами. Однако, при   обнаружена сверхтекучесть , обусловленная спариванием двух атомов гелия-3, так что такая пара ведет себя как бозон. Добавим, что Дейвид Ли, Дуглас Ошерофф и Роберт Ричардсон удостоены Нобелевской премии по физике 1996 года за открытие сверхтекучести гелия-3.

Рис. XII.1                                                          Рис.XII.2

Следует отметить, что зависимость теплоемкости вырожденного бозе-газа  при  связана с нерелятивистским законом дисперсии, , т.е. зависимостью энергии частицы от импульса. Если же закон дисперсии линеен, , то в этом случае . Действительно фазовый объем для квадратичного закона дисперсии и  для линейного закона. Подставляя сюда , приходим к указанным зависимостям теплоемкости от температуры. Примером систем с линейным законом дисперсии могут служить фононы в твердых телах (кванты возбуждения), а также фотоны (кванты электромагнитного поля).


 

А также другие работы, которые могут Вас заинтересовать

53550. Використання елементів методів проектів та комп’ютерної підтримки на уроках фізики 646.5 KB
  Важливим аспектом застосування інтерактивних технологій є оновлення структури уроків. Кожен вчитель знає, що такі уроки краще запам’ятовуються учнями, викликають зацікавленість і бажання взяти участь в уроці. В нашій роботі ми пропонуємо використання різних форм роботи на уроках математики, фізики та інформатики.
53551. Все про каву 127.5 KB
  Мета: поглибити знання учнів про каву як рослину її біологічні особливості; ознайомитися з хімічним складом кавових зерен їх корисність та шкідливість вплив на організм; розглянути технологію обробки кавових зерен історію поширення кави по світу; ознайомитися з найбільшими країнамивиробниками кави традиції та звичаї які з нею повязані. Розглянути різноманітні рецепти приготування кави цікаві факти про цю рослину та використання кави не за призначенням. Оформлення: назви лабораторій вислови про каву: Говорять все прекрасне в житті...
53552. Показатели оценки рыночной активности 25 KB
  Этот раздел анализа выполняется участниками фондового рынка. Показатели рыночной привлекательности позволяют оценить ожидания рынка относительно доходности и риска ценных бумаг эмитента. Для проведения анализа рыночной привлекательности используется как данные бухгалтерской отчетности...
53554. Казка казкою, а в ній наука 46 KB
  Пріоритетні лінії розвитку: соціально-моральний емоційноціннісний пізнавальний 6й рік життя Тема: Казка казкою а в ній наука Автор: Царенко Вікторія Миколаївна вихователь ДНЗ №8 Золотий півник м. Вихователь. Вихователь. Де ви могли чути ці слова Вихователь.
53555. Додатні та від’ємні числа. Протилежні числа. Координатний промінь 923.5 KB
  Протилежні числа. Мета модуля: сформувати уявлення учнів про зміст понять додатні числа від'ємні числа протилежні числа зміст поняття координати точки на координатній прямій; виробити вміння: відрізняти додатні числа від від'ємних й виконувати прості вправи що передбачають таку класифікацію; за готовими рисунками визначити координати вказаних точок звіряток та будувати на координатній прямій точки з вказаними координатами; розвивати логічне мислення та пізнавальну активність учнів при розвязуванні вправ. Розвязування...
53556. Оценка акций 25 KB
  Номинальная цена — это цена, напечатанная на бланке акции или установленная при ее выпуске. Номинальная цена формируется в момент создания акционерного общества и показывает, какая часть величины уставного капитала приходилась на одну акцию на момент ее формирования.
53557. Емма Андієвська „Казка про яян”. Прихований повчальний зміст казки 462.5 KB
  Прихований повчальний зміст казки. Розробка інтегрованого уроку з української літератури й економіки в 6 класі вчителя української мови та літератури...