19001

Химическое равновесие

Лекция

Физика

Лекция XIV 1. Химическое равновесие. Уравнение химической реакции общего вида можно представить в форме XIV.1.1 где химические символы реагирующих веществ целые числа отвечающие данной реакции. Например в случае превращения гремучего газа в воду имеем XIV.1.2...

Русский

2013-07-11

281 KB

0 чел.

Лекция XIV

1. Химическое равновесие.

Уравнение химической реакции общего вида можно представить в форме

,   (XIV.1.1)

где - химические символы реагирующих веществ,, - целые числа, отвечающие данной реакции. Например, в случае превращения гремучего газа в воду имеем

 (XIV.1.2)

Химическое равновесие обычно достигается в химических реакциях, протекающих при постоянных давлении и температуре (в автоклавах). В этих условиях при равновесии минимален термодинамический потенциал Гиббса :

,                 (XIV.1.3)

где - химический потенциал -ого вещества, - средние числа частиц различных веществ, участвующих в реакции. Рассмотрим любое вещество, например . Условие минимума  при  и  дает

        (XIV.1.4)

Изменение числа частиц различных сортов связано уравнением реакции (XIV.1.1): если  изменяется на , то  изменяется на , т.е.

                  (XIV.1.5)

Подставляя это соотношение в уравнение (XIV.1.4) и учитывая равенство , получаем условие химического равновесия

.     (XIV.1.6)

2. Закон действующих масс.

Если реагирующие вещества – идеальные газы или разреженные растворы, то условие равновесия (XIV.1.6) принимает простой вид. В этом случае

,        (XIV.2.1)

где концентрация,  квантовый объем и  – статистическая сумма по внутренним степеням свободы го вещества (см. Лекцию IX). Логарифмируя (XIV.2.1) и подставляя в условие (XIV.1.6), имеем

.   (XIV.2.2)

Отсюда окончательно получаем

,    (XIV.2.3)

– закон  действующих масс (для концентраций), где - функция только температуры.

В качестве примера найдем степень диссоциации молекулярного водорода на атомарный,

.            (XIV.2.4)

Определяющим обстоятельством в теории молекул является малость отношения массы электрона к массе молекулы: . При этом отношение энергии электронного возбуждения  к колебательной  и вращательной  энергиям равно

            (XIV.2.5)

Для водорода имеем

               (XIV.2.6)

При низких температурах  ни вращательные, ни колебательные степени свободы не возбуждаются, так что внутренние статистические суммы связаны только со спиновыми степенями свободы и отсчетом энергии

                   (XIV.2.7)

Если энергию отсчитывать от энергии молекулы, то

             (XIV.2.8)

- энергия диссоциации. Тогда закон действующих масс (XIV.2.3) дает  

  (XIV.2.9)

При высоких температурах необходимо учитывать также колебание и вращение молекулы .

3. Ионизационное равновесие.

При достаточно высоких температурах столкновения частиц могут сопровождаться ионизацией. Рассмотрим тепловую ионизацию одноатомного газа. Пусть  символ нейтрального атома,  -кратно ионизованного, а электрона. Тогда процессы последовательных ионизаций можно считать частным случаем химических реакций, см. (XIV.1.1):

   (XIV.3.1)

В простейшем случае первой ионизации имеем

     (XIV.3.2)

где - масса нейтрального атома, - масса электрона, , а - первый ионизационный потенциал. Поскольку , то масса иона практически равна . Подставляя (XIV.3.2) в закон действующих масс (XIV.2.3), приходим к соотношению

,       (XIV.3.3)

которое называется уравнением Саха.

Для числа частиц в объеме  получаем

          (XIV.3.4)

При  квантовый объем порядка боровского объема, , предэкспоненциальный фактор в (XIV.3.4) велик, так что процесс ионизации становится заметным при температурах много меньше потенциала ионизации, .

Так, например, для атома водорода

,        (XIV.3.5)

потенциал ионизации – энергия электрона на первой боровской орбите –. В силу электронейтральности , и уравнение Саха принимает вид

.  (XIV.3.6)

Согласно теории горячей Вселенной через лет после Большого взрыва она остыла примерно до 4000К. При таких температурах протоны и электроны, образующие горячую плазму, рекомбинируют в водород. Определим температуру рекомбинации  из условия, что половина протонов, подхватив электроны, превратилась в атомы водорода

                (XIV.3.7)

Хотя в настоящее время концентрация протонов во Вселенной равна

,                (XIV.3.8)

т.е. в четырех кубометрах содержится в среднем примерно один протон, при температуре  их концентрация была значительно выше

,              (XIV.3.9)

поскольку с тех пор Вселенная расширилась в  раз.

Уравнение Саха с условием (XIV.3.7) дает для температуры рекомбинации значение

,          (XIV.3.10)

причем концентрации равны

.   (XIV.3.11)

С учетом равенств (XIV.3.8)-(XIV.3.10) уравнение Саха дает

.   (XIV.3.12)

Нетрудно проверить, что при  приходим к значению (XIV.3.11), поскольку . С возрастанием температуры водород диссоциирует на протоны и электроны:

    при

, соответственно. Наоборот, при остывании Вселенной, т.е. при ее расширении, процесс рекомбинации растет экспоненциально:  при , соответственно.

Вещество становится практически прозрачным для фотонов (), и они выходят из термодинамического равновесия с ним. При дальнейшем расширении Вселенной эти реликтовые фотоны “остывают” в соответствии с распределением Планка (XIII.3.5). В настоящее время их температура надежно измерена

   (XIV.3.13)

(с момента рекомбинации водорода Вселенная расширилась в ). Установлено также, что это космическое фоновое излучение в высокой степени однородно и изотропно. Это служит подтверждением космологического принципа, согласно которому Вселенная на сверхгалактических масштабах однородна и изотропна.

4. Равновесие по отношению к образованию -пар.

Для равновесных концентраций электронов  и позитронов  распределение Ферми-Дирака, см. (IX.2.3) и (X.2.4), дает

.  (XIV.4.1)

С термодинамической точки зрения рождение и аннигиляция электрон-позитронных пар

           (XIV.4.2)

– химические реакции. В соответствии с (XIV.1.6) имеем

             (XIV.4.3)

Поскольку химический потенциал фотонов , то

       (XIV.4.4)

и для определения концентраций получаем уравнения

.   (XIV.4.5)

Последнее равенство следует из электронейтральности системы (для электрон-протонной плазмы). Рассмотрим предельные случаи этих уравнений .

а) Нерелятивистский невырожденный газ электронов и позитронов.

В этом случае . Полагая

           (XIV.4.6)

для электронов получаем как обычно

,                (XIV.4.7)

а для позитронов соответственно имеем

.         (XIV.4.8)

С учетом этих условий интегралы в (XIV.4.5) дают

.           (XIV.4.9)

Отсюда для определения концентраций следуют уравнения

,         (XIV.4.10)

т.е. условие равновесия в виде закона действующих масс.

б) Релятивистский газ электронов и позитронов.

При температурах  количество – пар велико по сравнению с числом протонов и можно считать, что . Это условие зарядовой симметрии приводит к равенству

,    (XIV.4.11)

которое дает , т.е. . Таким образом, в релятивистском случае, когда частицы эффективно становятся безмассовыми, их химические потенциалы равны нулю, как и для фотонов. Для тех и других это связано с механизмом установления термодинамического равновесия.


 

А также другие работы, которые могут Вас заинтересовать

23050. Цифро-аналогові перетворювачі 1.33 MB
  1 зображено схему 4розрядного ЦАП. 1 Лічильник U3A та пробні джерела складають тестову схему яка послідовно подає на вхід ЦАП цифрові коди від 0 0000 до 15 1111. Зростаючий код на виході ЦАП буде перетворюватися на лінійно зростаючу напругу. 2 зображено схему дослідження 8розрядного інтегрального ЦАП.
23051. Ознайомлення з основними можливостями пакета програм автоматизованого проектування електронних схем MicroSim PSPICE 8.0 1.35 MB
  Система автоматизованого проектування MicroSim PSPICE використовує один з найбільш вдалих кодів схемотехнічного моделювання SPICE Simulation Program with Integrated Circuit Emphasis який був розроблений на початку 70х років фахівцями Каліфорнійського університету США. Фактично зазначений код став стандартним для моделювання електронних схем і застосовується також у інших відомих системах моделювання схем зокрема MicroCap а вхідний формат мови завдань SPICE підтримується практично усіма пакетами автоматизованого проектування електронних...
23052. Електронний ключ на біполярному транзисторі 482 KB
  Каскад виконує логічну операцію заперечення оскільки високий рівень напруги на вході забезпечує введення транзистора у режим насичення коли напруга на навантаженні буде низькою. При введенні наведеної вище схеми дослідження ключового каскаду застосовуються джерела сталої напруги живлення VCC та імпульсної вхідної напруги VIN. Перелічимо основні параметри даних джерел: Як джерело сталої напруги живлення застосовується стандартна модель VSRC що міститься у бібліотеці source. Основними є такі її параметри: DC стала напруга що її виробляє...
23053. Електронні ключі на МДН-транзисторах 1.07 MB
  Вважайте що напруга живлення дорівнює 10 В амплітуда вхідного імпульсу 10 В тривалість цього імпульсу 500 нс його період 1000 нс. Тривалості фронту і спаду імпульсу задайте дуже малими наприклад по 0. Поясніть зміни у тривалості спаду вихідного імпульсу та рівні напруги логічного нуля на виході. Параметри джерел вважайте такими: напруга живлення 20 В амплітуда вхідного імпульсу 20 В тривалість цього імпульсу 500 нс його період 1000 нс.
23054. Базовий елемент транзисторно-транзисторної логіки (ТТЛ) 1016 KB
  Насправді опором навантаження для виходу ТТЛсхеми звичайно є вхідний опір наступної ТТЛсхеми. Оскільки у реальних ситуаціях на один вихід треба під’єднувати досить багато входів важливим є такий параметр схеми як навантажувальна здатність тобто максимальна кількість входів яку можна навантажити на вихід без втрати працездатності схеми. Оскільки транзистори в даній схемі працюють у режимах насичення та відсікання має місце досит значна інерційність схеми потрібен певний час для переведення транзисторів з одного граничного стану в...
23055. Моделювання цифрових логічних схем 178.5 KB
  Перелічимо деякі логічні ІМС 74ї серії: 74x00 базовий елемент 2ІНЕ 74x10 логічний елемент 3ІНЕ 74x20 логічний елемент 4ІНЕ 74x30 логічний елемент 8ІНЕ 74x02 логічний елемент 2АБОНЕ 74x27 логічний елемент 3АБОНЕ 74x08 логічний елемент 2І 74x32 логічний елемент 2АБО 74x04 інвертор логічний елемент НЕ 74x51 логічний елемент 2І2АБОНЕ 74x86 логічний елемент Виключне АБО на 2 входи Пакет OrCAD дозволяє провести суто цифрове моделювання для даного вузла схеми якщо до цього вузла під’єднані лише входи та виходи...
23056. Роль та повноваження Ради національної безпеки України в системі забезпечення національної безпеки 40.5 KB
  Роль та повноваження Ради національної безпеки України в системі забезпечення національної безпеки. Це випливає із Закону України Про Раду національної безпеки.подає пропозиції Президентові України щодо .визначення стратегічних національних інтересів України концептуальних підходів та напрямів забезпечення національної безпеки і оборони у політичній економічній соціальній військовій науковотехнологічній екологічній інформаційній та інших сферах проектів державних програм доктрин .
23057. Стратегія національної безпеки України: основні положення та проблеми формування 38 KB
  Стратегія національної безпеки України: основні положення та проблеми формування. ТЕМА: Стратегія національної безпеки Стратегія – чітко вивірений шлях і напрям досягнення мети. Стратегія національної безпеки – це система державнополітичних рішень головних напрямків діяльності у сфері безпеки послідовна реалізація яких забезпечує досягнення мети головна лінія що дозволяє забезпечити безпеку на певний період спрямована на досягнення середньострокових та довгострокових інтересів. В НАТО змінено пріоритет безпеки на поширення зони...
23058. Загрози національній безпеці України у політичній сфері та шляхи їх нейтралізації 40 KB
  Загрози національній безпеці України у політичній сфері та шляхи їх нейтралізації. Загрози у внутрішньополітичній сфері: порушення з боку органів державної влади та органів місцевого самоврядування Конституції і законів України прав і свобод людини і громадянина в тому числі при проведенні виборчих кампаній недостатня ефективність контролю за дотриманням вимог Конституції і виконанням законів України; можливість виникнення конфліктів у сфері міжетнічних і міжконфесійних відносин радикалізації та проявів екстремізму в діяльності деяких...