19005

Принцип относительности Галилея. Функция Лагранжа свободной материальной точки. Функция Лагранжа системы взаимодействующих частиц. Функция Лагранжа в декартовых и обобщённых координатах

Лекция

Физика

Лекция 3. Принцип относительности Галилея. Функция Лагранжа свободной материальной точки. Функция Лагранжа системы взаимодействующих частиц. Функция Лагранжа в декартовых и обобщённых координатах Установим вид функции Лагранжа простейших механических систем и уста...

Русский

2013-07-11

275 KB

25 чел.

Лекция 3. Принцип относительности Галилея. Функция Лагранжа свободной материальной точки. Функция Лагранжа системы взаимодействующих частиц. Функция Лагранжа в декартовых и обобщённых координатах

Установим вид функции Лагранжа простейших механических систем и установим рецепт ее нахождения в тех или иных случаях. Для этого будем использовать ряд общих свойств пространства-времени, а также законы Ньютона так, чтобы в декартовых координатах уравнения Лагранжа переходили в законы Ньютона.

Принцип относительности Галилея

Для изучения механических явлений необходимо выбрать какую-то систему отсчета. В различных системах отсчета законы движения будут иметь, вообще говоря, различный вид. Если взять произвольную систему отсчета (например, вращающуюся), то законы даже совсем простых явлений будут выглядеть в ней весьма сложно. По отношению к произвольной системе отсчета пространство является неоднородным и неизотропным. Это значит, что для свободного тела, которое не взаимодействует с другими телами, его различные положения в пространстве и его различные ориентации будут не эквивалентны в механическом отношении. То же относится и ко времени, которое будет неоднородным, т.е. его различные моменты могут быть неэквивалентны. Например, во вращающейся системе координат, свободное тело не могло бы покоиться. если скорость тела в некоторый момент времени и была бы равна нулю, то уже в следующий момент времени тело начало бы двигаться (относительно этой системы отсчета) в некотором направлении. однако, как показывает опыт всегда можно найти такую систему отсчета, по отношению к которой пространство является однородным и изотропным, а время - однородным. Такая простейшая система отсчета называется инерциальной. В такой системе отсчета тело, покоящееся в некоторый момент времени , будет оставаться в покое неограниченно долго (эти утверждения, фактически, повторяют первый закон Ньютона).

Рассмотрим свободно движущуюся материальную точку в инерциальной системе отсчета. В силу однородности пространства и времени, функция Лагранжа такой точки не должна зависеть от величин  и . В силу изотропии пространства, она может зависеть только от величины скорости, но не от её направления, т.е. зависеть только от квадрата скорости . Поэтому, для свободной м.т. точки

    (1)

Свободная материальная точка имеет три степени свободы - . Выберем в качестве системы координат прямоугольную декартовую систему. Тогда , , . Система 3-х уравнений Лагранжа (см. конец предыдущей лекции) запишется так:

;       ;        (2)

Очень удобно использовать краткие символические обозначения, широко распространенные в физике:

Теперь с учетом этих определений систему 3-х уравнений можно записать в виде одного векторного уравнения:

    (3)

Поскольку в рассматриваемом случае , то уравнение Лагранжа (3) для свободной частицы будет выглядеть очень просто:

     (4)

Отсюда получаем, что . Используя символическое правило дифференцирования, запишем:

  (5)

Поскольку величина  - скалярная, то равенство (5) может быть выполнено только при условии, что

     (6)

Таким образом, в инерциальной системе отсчета движение свободного тела происходит с постоянной (по величине и по направлению) скоростью. Это утверждение составляет содержание закона инерции, т.е., фактически, первого закона Ньютона.

Если какая-то другая система отсчета движется относительно данной инерциальной системы равномерно и прямолинейно, то она то же является инерциальной. Таким образом, существует бесчисленное множество инерциальных систем отсчета.

Опыт показывает, что все инерциальные системы полностью эквивалентны. Это утверждение составляет содержание одного из важнейших принципов механики – принципа относительности Галилея: Во всех инерциальных системах отсчета свойства пространства и времени одинаковы; одинаковы и все законы механики. Это значит, что все физические законы в любых инерциальных системах одинаковы. По отношению к механике это означает, что вид уравнений движения не изменяются при переходе от одной инерциальной системы к другой. Все сказанное говорит об исключительности свойств инерциальных систем отсчета. Поэтому везде в дальнейшем, если не оговаривается особо, мы будем рассматривать только инерциальные системы отсчета.

Определим теперь вид функции Лагранжа для одной свободной частицы. Как показано выше, в этом случае . При этом уравнения движения во всех инерциальных отчетах должны иметь один и тот же вид.

Пусть система  движется относительно  с постоянной скоростью . Тогда функция Лагранжа  в системе  должна перейти в такую функцию  в системе , которая, если и отличается от функции , то лишь на полную производную какой-то функции координат и времени. Поскольку , то

     ,  т.е.     (7)

Учитывая это, сразу получаем, что для свободной частицы ф. Лагранжа должна быть пропорциональна квадрату скорости:

    (8)

Уравнение Лагранжа для свободной частицы теперь будет выглядеть так:

,     т.е.       

Сравнивая это с уравнением второго закона Ньютона для свободной частицы  , находим, что . Здесь  - инертная масса тела. Таким образом, окончательно получаем следующее выражение для функции Лагранжа одной свободной частицы:

    (9)

Отметим, что в этом пункте мы существенно воспользовались вторым законом Ньютона. Иначе мы не смогли бы понять, что есть .

Если механическая система состоит не из одной, а из  невзаимодействующих частиц, то в силу свойства аддитивности функции Лагранжа, получим

    (10)

Величина

     (11)

называется кинетической энергией - ой частицы.

Сумма кинетических энергий всех частиц есть полная кинетическая энергия системы:

    (12)

Таким образом, кинетическая энергия есть величина аддитивная.

Рассмотрим теперь систему  м.т., взаимодействующих только друг с другом, но ни с какими посторонними телами, не входящими в эту систему. Такая система называется замкнутой системой.

Оказывается, что в классической механике, когда скорости частиц малы по сравнению со скоростью света , взаимодействие между точками системы может быть описано прибавлением к функции Лагранжа невзаимодействующих точек, некоторой функции координат  . Конкретный вид этой функции зависит от характера взаимодействия между частицами. Величина  называется потенциальной энергией системы. С учетом сказанного, в самом общем виде, ф. Лагранжа для замкнутой системы из  м.т. в декартовой системе координат будет выглядеть так:

   (13)

Потенциальная энергия зависит от положения всех м.т.  в один и тот же момент времени . Это означает, что изменение положения хотя бы одной из них, мгновенно отражается на всех остальных. Следовательно, в классической механике считается, что взаимодействие между телами «распространяется» мгновенно, с бесконечно большой скоростью.

Зная функцию Лагранжа, можем записать систему уравнений Лагранжа в следующем символическом векторном виде:

,           (14)

Поскольку , а , то система уравнений (14) примет вид:

,       (15)

Вектор

   (16)

называется силой, действующей на -ю частицу, со стороны всех остальных частиц системы. Вместе с  сила зависит только от координат частиц, но не от их скоростей: . Теперь система уравнений Лагранжа запишется так:

    (17)

Таким образом, если в качестве обобщенных координат выбрать декартовы координаты, уравнения Лагранжа сводятся к системе уравнений второго закона Ньютона.

При решении большинства задач, оказывается удобным использовать не декартовы, а некоторые обобщенные координаты . В этом случае для написания функции. Лагранжа нужно произвести соответствующие преобразования. Прежде всего, нужно выразить все декартовы координаты точек через обобщенные координаты  :

.

Затем нужно выразить кинетическую энергию системы через выбранные обобщенные координаты. Т.к.

,

то

Обозначим

  (18)

Отсюда видно, что матрица  зависит только от обобщенных координат и является симметричной матрицей. Таким образом, в обобщенных координатах кинетическая энергия системы по-прежнему является квадратичной функцией скоростей, но может зависеть и от обобщенных координат:

.

Теперь функцию Лагранжа запишем в виде:

  (19)

Рассмотрим несколько простых примеров.

Запишем кинетическую энергию м.т.  в декартовых, цилиндрических и сферических координатах. При этом учтем, что независимо от выбора координат

    (20)

Здесь  - квадрат элемента дуги в соответствующих координатах.

1.  В декартовых координатах:

    (21)

2. В цилиндрических координатах:  - расстояние до оси ; - азимутальный угол в плоскости  .

.

.

Поэтому

    (22)

Величина  определяет быстроту удаления  или приближения  точки к оси . Величина  есть угловая скорость вращения частицы относительно оси . Знак величины  определяет направление вращения (если смотреть на плоскость  со стороны оси ) – против часовой стрелки - знак "плюс", а по часовой стрелке – знак "минус". Наконец, величина  определяет поступательную скорость движения относительно оси .

3. В сферических координатах: - расстояние до начала координат; - полярный угол; - азимутальный угол :

               ;

Поэтому

   (23)

6

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

66539. Исследование мостовых соединений 201 KB
  Оборудование: Беспроводные адаптеры (типа DWL-G132) – по одному на пользователя Точки доступа (типа DWL-2100AP) – 2 штуки Точки доступа (типа DWL-3200AP) – 2 штуки Цель работы: Изучение дополнительных режимов работы WDS и WDS with AP.
66540. Моделі та методи обробки нечітких знань. Нечіткі множини 31.77 KB
  При розробці інтелектуальних систем знання про конкретну предметну область, для якої створюється система, рідко бувають повними й абсолютно достовірними. Навіть кількісні дані, отримані шляхом досить точних експериментів
66541. ДОСЛІДЖЕННЯ ЛІНІЙНОГО РОЗГАЛУЖЕНОГО ЕЛЕКТРИЧНОГО КОЛА СИНУСОЇДНОГО СТРУМУ 600 KB
  Експериментально визначити параметри резистора R, котушки індуктивності (індуктивність L, резистивний опір Rк) та конденсатора С в колі синусоїдного струму. Експериментально дослідити явище резонансу струмів, фазові й енергетичні співвідношення в колі з паралельним з'єднанням котушки індуктивності (з індуктивністю L і резистивним опором
66543. Тестування, логічна організація та форматування HDD 1.57 MB
  Натискаємо клавішу P англ і вибираємо потрібний канал вибір здійснюється стрілочками якщо ви не знаєте який у вас диск вибирайте по черзі. Натискаємо Enter і F2. Якщо не з'явився натискаємо знову P і вибираємо інший канал.
66544. Освоение технологии структурного программирования и применения стандартных методов работы с одномерными массивами при разработке и создании программы на языке Турбо Паскаль 224 KB
  Освоение методов структурного программирования при разработке и создании программы на языке Турбо Паскаль для обработки одномерных массивов. Теоретические сведения Массив это регулярная структура последовательность однотипных данных объявляемых специальной конструкцией языка...
66545. Многопоточность. Межпроцессорные взаимодействия 49 KB
  Два дочерних процесса выполняют некоторые циклы работ, передавая после окончания очередного цикла через очереди сообщений родительскому процессу очередные четыре строки некоторого стихотворения, при этом первый процесс передает нечетные четверостишья, второй - четные.
66546. МНОГОПОТОЧНОСТЬ. МЕЖПРОЦЕССНЫЕ ВЗАИМОДЕЙСТВИЯ 64.6 KB
  Написать программу, создающую два потока, которые выполняются в одном адресном пространстве (в одном процессе). Их разделяемый ресурс - целочисленный массив, который содержит данные совместного использования. Потоки должны обрабатывать массив поочередно.
66547. Разработка и отладка алгоритмов и программ c использованием структур данных 87.42 KB
  Цель работы: Получить практические навыки в разработке алгоритмов и написании программ на языке С с использованием структур данных. Оборудование: IBM – совместимый компьютер, Система программирования QC 2.5.