19008

Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале

Лекция

Физика

Лекция 6. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале Одномерным называется движение системы с одной степенью свободы: . в самом общем виде функция Лагранжа выглядит так:

Русский

2013-07-11

301 KB

35 чел.

Лекция 6. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале

 Одномерным называется движение системы с одной степенью свободы: . в самом общем виде функция Лагранжа выглядит так:

   (1)

Величина  - некоторая функция обобщенной координаты . Уравнение Лагранжа и начальные условия имеют вид:

   (2)

В общем виде, при произвольной потенциальной энергии , зависящей как от координаты , так и от времени , уравнения Лагранжа (2) аналитически не решаются. Ситуация радикально упрощается, когда потенциальная энергия не зависит явно от времени, т.е.

     (3)

Отличительной чертой стационарного одномерного движения является то обстоятельство, что решение уравнения (2) легко находится в общем виде при произвольной зависимости , по крайней мере в квадратурах.

Т.к. в этом случае , то  и для нахождения закона движения частицы проще всего воспользоваться законом сохранения энергии:

     (4)

Из уравнения (5.4) находим, что

;              .     

Это уравнение первого порядка с разделяющимися переменными:

    (5)

Его общее решение имеет вид:

   (6)

Решение уравнения (6) можно также  записать в виде:

    (7)

Если интеграл в формулах (7) удастся вычислить аналитически, то мы получим зависимость , т.е. закон движения в неявном виде. Если это уравнение удастся ещё и разрешить относительно обобщенной координаты , то мы получим закон движения частицы в явном виде:  и задача будет полностью завершена.

Роль двух произвольных постоянных в формуле (6) играют полная энергия  и произвольная константа . Если величина  есть обычная декартова координата , то величина - масса частицы. В этом случае все полученные выше формулы будут выглядеть так:

   (8)

Уравнение Лагранжа сводится ко второму закону Ньютона:

  (9)

Закон сохранения энергии теперь выглядит совсем привычным образом:

     (10)

Отсюда находим, что

,   т.е.    (11)

так, что

  (12)

Решение уравнения (11) можно также записать в виде:

    (13)

Здесь

    (14)

    (15)

Поскольку кинетическая энергия всегда положительная величина, то из закона сохранения энергии  следует, что движение частицы может происходить только в тех областях пространства, где

    (16)

Неравенство (16) определяют границы области движения частицы. корни уравнения

      (17)

определяют истинные точки остановки частицы. В этих точках  и, следовательно, .

Если область движения ограничена двумя точками остановки, то движение происходит между этими точками в ограниченной области пространства. такое движение называется финитным движением. Если же область движения ограничена с одной стороны одной точкой остановки (или вообще не ограничена), то такое движение называется инфинитным. При инфинитном движении частица уходит на бесконечность. Рассмотрим, например, зависимость , изображенную на рисунке. Проведя на этом рисунке горизонтальную прямую, соответствующую заданному значению полной энергии , можно сразу определить точки остановки  и области доступного движения.

На нашем рисунке область доступного финитного движения, это движение в «потенциальной яме» , между точками остановки  и . Область доступного инфинитного движения это область . достигнув точки , частица останавливается. в точке  на частицу действует сила , которая заставляет изменить направление движения частицы и частица тут же начинает двигаться вправо, в область .

Вычисление периода одномерных колебаний

Одномерное финитное движение всегда является колебательным. Частица совершает периодически повторяющиеся движения между двумя точками остановки  и . При этом время движения от  к  и обратно, от  к  одно и тоже и равно половине периода колебаний. Выберем за начало отсчета времени тот момент, когда частица находилась в крайней левой точке . Тогда

   (18)

Координаты точек остановки  и , определяемые из уравнения (17), зависят от энергии .

Рассмотрим простой пример. Вычислим с помощью формулы (18) период и собственную частоту  гармонических колебаний тела  на пружине жесткостью , если задана энергия системы .

Т.к. потенциальная энергия пружины , то формула (18) принимает вид:

/

Точки остановки   и  . Делая замену переменной интегрирования , приводим интеграл к виду

,

В результате имеем:.

Видим, что в поле , период колебаний не зависит от энергии системы. Не трудно сообразить, что амплитуда колебаний зависит от энергии и определяется по формуле: .

3

(x)

C

U(x)

x

U(x)

A

B

E

C

xA

xB

E

E

xC


 

А также другие работы, которые могут Вас заинтересовать

42680. Исследование процесса испытания конструкционных материалов при случайном режиме нагружения 278 KB
  Ознакомиться c основными процедурами, предшествующим установлению ресурса ВС; методами схематизации процессов нагружения. Оформить отчет №1 по лабораторной работе в виде рукописного конспекта, с необходимыми иллюстрациями. В отчете дайте развернутые ответы на все вопросы, которые приведены ниже.
42681. Исследование процесса испытания конструкционных материалов при случайном режиме нагружения 40 KB
  Ознакомиться c гипотезами накопления повреждений; Стандартизированными спектрами нагружения используемых при изучении усталостных характеристик летательных аппаратов. ВОПРОСЫ В чем заключается смысл концепции линейного накопления повреждений при усталости Основные недостатки линейной гипотезы накопления повреждений В чем заключается смысл модифицированных гипотез...
42682. Автоматические системы контроля технического состояния самолета. Деформационный рельеф плакированных сплавов как показатель истории нагруженности 1.63 MB
  Ознакомиться с проблемами концентрации напряжения и коэффициентами которые определяют ее; принципами построения автоматизированной системой контроля технического состояния самолета; деформационным рельефом который является показателем поврежденности конструкции самолета. На распечатанном рисунке самолета А380 формат А2 нанести примеры применения систем контроля целостности конструкции. ВОПРОСЫ В чем...
42683. Основные приемы работы в СУБД Microsoft Access 292 KB
  Основные приемы работы в СУБД Microsoft ccess Приложение ccess является программой входящий в пакет Microsoft Office и предназначено для работы с базами данных. База данных. В общем смысле термин база данных можно применить к любой совокупности связанной информации объединенной вместе по определенному признаку организованных по определенным правилам предусматривающим общие принципы описании хранения и манипулирования данными которые относятся к определенной предметной области. Система управления базами данных СУБД – прикладное...
42684. Аппаратное обеспечение персональних ЭВМ 43.5 KB
  Харьков 2010 Лабораторная работа №1 Аппаратное обеспечение персональних ЭВМ Цель работы: Ознакомление с составом и структурой ПЭВМ. Порядок выполнения работы: Визуально ознакомится с составом ПЭВМ. Определить составные части ПЭВМ и...
42685. Операционная система Windows XP/2000, основные элементы 78 KB
  С помощью проводника WinE создали на диске С: каталог Группа АП10Б. В каталоге группы на двух членов бригады создали файл с помощью редактора Notepd. В файле записали: Стерлик Дмитро Кунченко Алексей Созданный файл открыли с помощью редактора WordPd и отредактировали его. С помощью графического редактора Pint нарисовали картинку размножили ее по экрану и сохранили в каталоге Группа АП10Б.
42686. Работа в операционной системе Windows XP2000 79 KB
  С помощью проводника WinE создали на диске С: каталог Группа АП10Б. В каталоге группы на двух членов бригады создали файл с помощью редактора Notepd. В файле записали: Стерлик Дмитро Александрович Алексей Кунченко Михайлович Созданный файл открыли с помощью редактора WordPd и отредактировали его. С помощью графического редактора Pint нарисовали картинку размножили ее по экрану и сохранили в каталоге Группа АП10Б.
42687. ИССЛЕДОВАНИЕ ОДНОПОЛУПЕРИОДНОГО И ДВУХПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЕЙ С ПРИМЕНЕНИЕМ СИСТЕМЫ СХЕМОТЕХНИЧЕСКОГО МОДЕЛИРОВАНИЯ «ELECTRONICS WORKBENCH» 159 KB
  Краткие теоретические сведения Среднее значение выходного напряжения постоянная составляющая в схеме однополупериодного выпрямителя рисунок 2. Среднее значение выходного напряжения постоянная составляющая мостового выпрямителя рис.3 Частота выходного сигнала для схемы с однополупериодным или двухполупериодным выпрямителем а так же для схемы с двухполупериодным мостовым выпрямителем вычисляется как величина обратная периоду выходного сигнала: . Если на выход любого из выше рассмотренных выпрямителей включить конденсатор то...