19008

Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале

Лекция

Физика

Лекция 6. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале Одномерным называется движение системы с одной степенью свободы: . в самом общем виде функция Лагранжа выглядит так:

Русский

2013-07-11

301 KB

38 чел.

Лекция 6. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале

 Одномерным называется движение системы с одной степенью свободы: . в самом общем виде функция Лагранжа выглядит так:

   (1)

Величина  - некоторая функция обобщенной координаты . Уравнение Лагранжа и начальные условия имеют вид:

   (2)

В общем виде, при произвольной потенциальной энергии , зависящей как от координаты , так и от времени , уравнения Лагранжа (2) аналитически не решаются. Ситуация радикально упрощается, когда потенциальная энергия не зависит явно от времени, т.е.

     (3)

Отличительной чертой стационарного одномерного движения является то обстоятельство, что решение уравнения (2) легко находится в общем виде при произвольной зависимости , по крайней мере в квадратурах.

Т.к. в этом случае , то  и для нахождения закона движения частицы проще всего воспользоваться законом сохранения энергии:

     (4)

Из уравнения (5.4) находим, что

;              .     

Это уравнение первого порядка с разделяющимися переменными:

    (5)

Его общее решение имеет вид:

   (6)

Решение уравнения (6) можно также  записать в виде:

    (7)

Если интеграл в формулах (7) удастся вычислить аналитически, то мы получим зависимость , т.е. закон движения в неявном виде. Если это уравнение удастся ещё и разрешить относительно обобщенной координаты , то мы получим закон движения частицы в явном виде:  и задача будет полностью завершена.

Роль двух произвольных постоянных в формуле (6) играют полная энергия  и произвольная константа . Если величина  есть обычная декартова координата , то величина - масса частицы. В этом случае все полученные выше формулы будут выглядеть так:

   (8)

Уравнение Лагранжа сводится ко второму закону Ньютона:

  (9)

Закон сохранения энергии теперь выглядит совсем привычным образом:

     (10)

Отсюда находим, что

,   т.е.    (11)

так, что

  (12)

Решение уравнения (11) можно также записать в виде:

    (13)

Здесь

    (14)

    (15)

Поскольку кинетическая энергия всегда положительная величина, то из закона сохранения энергии  следует, что движение частицы может происходить только в тех областях пространства, где

    (16)

Неравенство (16) определяют границы области движения частицы. корни уравнения

      (17)

определяют истинные точки остановки частицы. В этих точках  и, следовательно, .

Если область движения ограничена двумя точками остановки, то движение происходит между этими точками в ограниченной области пространства. такое движение называется финитным движением. Если же область движения ограничена с одной стороны одной точкой остановки (или вообще не ограничена), то такое движение называется инфинитным. При инфинитном движении частица уходит на бесконечность. Рассмотрим, например, зависимость , изображенную на рисунке. Проведя на этом рисунке горизонтальную прямую, соответствующую заданному значению полной энергии , можно сразу определить точки остановки  и области доступного движения.

На нашем рисунке область доступного финитного движения, это движение в «потенциальной яме» , между точками остановки  и . Область доступного инфинитного движения это область . достигнув точки , частица останавливается. в точке  на частицу действует сила , которая заставляет изменить направление движения частицы и частица тут же начинает двигаться вправо, в область .

Вычисление периода одномерных колебаний

Одномерное финитное движение всегда является колебательным. Частица совершает периодически повторяющиеся движения между двумя точками остановки  и . При этом время движения от  к  и обратно, от  к  одно и тоже и равно половине периода колебаний. Выберем за начало отсчета времени тот момент, когда частица находилась в крайней левой точке . Тогда

   (18)

Координаты точек остановки  и , определяемые из уравнения (17), зависят от энергии .

Рассмотрим простой пример. Вычислим с помощью формулы (18) период и собственную частоту  гармонических колебаний тела  на пружине жесткостью , если задана энергия системы .

Т.к. потенциальная энергия пружины , то формула (18) принимает вид:

/

Точки остановки   и  . Делая замену переменной интегрирования , приводим интеграл к виду

,

В результате имеем:.

Видим, что в поле , период колебаний не зависит от энергии системы. Не трудно сообразить, что амплитуда колебаний зависит от энергии и определяется по формуле: .

3

(x)

C

U(x)

x

U(x)

A

B

E

C

xA

xB

E

E

xC


 

А также другие работы, которые могут Вас заинтересовать

50037. ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА 140 KB
  Кольца Ньютона. Классическим примером полос равной толщины являются кольца Ньютона. 1а видно что толщина воздушного зазора δ связана с радиусами наблюдаемых колец rk и радиусом кривизны линзы R следующим образом: 2 Учтем что δ R2 1 и пренебрегая этим слагаемым в формуле 2 получим: 3 С учетом 3 выражение 1 будет иметь вид: 4 Интерференционные максимумы светлые кольца получаются при условии если на разности хода укладывается четное число полуволн целое число длин волн: 5 где k = 0 1 2. порядок интерференции или...
50042. Культура України шпаргалка 908 KB
  Культура як духовний та суспільний феномен. Функції культури у розрізі проблеми визначення культури. Іларіон Київський Слово про Закон, Благодать та істину: зміст, значення та основні проблеми твору. Культура Запорізької Січі та її самобутні риси. Розвиток української літератури у другій половині ХІХ ст.
50043. ПРОГРАММИРОВАНИЕ С ПОМОЩЬЮ ОПЕРАТОРОВ УСЛОВНОГО И БЕЗУСЛОВНОГО ПЕРЕХОДА 41 KB
  Составной оператор – представляет собой группу из произвольного числа операторов, отделенных друг от друга точкой с запятой, ограниченную операторными скобками – зарезервированные слова Begin и End.
50044. ИЗУЧЕНИЕ СВОБОДНЫХ КОЛЕБАНИЙ ФИЗИЧЕСКОГО МАЯТНИКА 205 KB
  Настенный кронштейн с подушками для опорных призм физического маятника. такой математический маятник период колебаний которого равен периоду колебаний физического маятника. Длина такого математического маятника называется приведенной длиной физического маятника.
50045. Статистический характер прочности 379.5 KB
  Классификация нагрузок Нагрузки и воздействия представляют собой наиболее неопределенные величины обладающие большим статистическим разбросом. В части математического описания нагрузки делятся на: нагрузки представляющие собой случайные величины; нагрузки представляющие собой случайные функции времени; нагрузки изменяющиеся...