19010

Движение в центральном поле. Финитное и инфинитное движение. Падение на центр

Лекция

Физика

Лекция 8. Движение в центральном поле. Финитное и инфинитное движение. Падение на центр Выберем начло координат в центре поля См. рисунок. В начальный момент времени частица находилась в какото точке имела импульс и следовательно имела относительно центра поля м...

Русский

2013-07-11

828 KB

62 чел.

Лекция 8. Движение в центральном поле. Финитное и инфинитное движение. Падение на центр

Выберем начло координат  в центре поля (См. рисунок). В начальный момент времени  частица находилась в како-то точке , имела импульс  и, следовательно, имела относительно центра поля момент импульса . Как нам уже известно, при движении в ЦС поле сохраняется момент импульса относительно центра поля:

   (1)

Следовательно, в каждый момент времени величины  и . Поэтому из закона сохранения момента импульса сразу следует, что траектория движение частицы в ЦС всегда остается в одной плоскости, перпендикулярной . Но это означает, что рассматриваемая задача имеет две степени свободы: s=2, а общее решение уравнений движения должно содержать четыре произвольные константы.Выберем ось  вдоль вектора , так, что

,       т.е.         (2)

При таком выборе оси  движение частицы будет происходить в плоскости . (см. рисунок).

Используем далее полярные координаты  и . В полярных координатах ф. Лагранжа имеет известный нам вид:

   (3)

Уравнения Лагранжа будут выглядеть так:

;                 (4)

;                   (5)

Поскольку ф. Лагранжа не зависит явно от угла  , то координата  является циклической. Поэтому из уравнения Лагранжа (5) сразу следует, что сохраняется обобщенный импульс:. Как нам известно, величина . Но при нашем выборе осей координат . Поэтому уравнение (5) выражает закон сохранения момента импульса относительно центра поля:

     (6)

Закон сохранения момента при плоском движении допускает наглядную геометрическую интерпретацию. Выражение  есть площадь сектора, образованными двумя бесконечно близкими радиус-векторами с углом  между ними и элементом дуги траектории. Поэтому закон сохранения момента импульса (6) можно записать в виде:

      (7)

Производную  называют секториальной скоростью, а закон сохранения момента импульса иногда называется интегралом площадей: за равные промежутки времени радиус-вектор движущейся точки описывает равные площади (второй закон Кеплера).

Из формулы (6) получаем, что

     (8)

Следовательно, угол  монотонно возрастает со временем, т.е. угловая скорость частицы . Из (8) сразу следует, что наибольшее значение угловая скорость достигает при наименьшем расстоянии частицы от центра поля:

   (9)

Полное решение задачи о движении в ЦС проще всего получить, используя законы сохранения энергии и импульса:

  (10)

Из второго уравнения (10) сразу находим угловую скорость

     (11)

Подставляя (11) в первое уравнение (10) получаем:

    (12)

Здесь  - так называемая «эффективная» потенциальная энергия частицы в ЦС поле:

   (13)

Величину  называют центробежной энергией. Соответствующая её центробежная сила всегда является силой отталкивания:

.                             (14)

Только в тех случаях, когда , величина эффективной потенциальной энергии совпадает с истинной потенциальной энергией частицы:

   (15)

Уравнение (12) для радиального движения частицы формально похоже на одномерное уравнение движение частицы с одной степенью свободы, изученное нами ранее. Однако следует помнить, что в рассматриваемой задаче величина  всегда положительна:  и точка  является центром поля. Кроме того, если , то это не точка остановки, как при истинном одномерном движении, а точка остановки радиального движения. Границы области движения (по расстоянию от центра) определяются условием:

    (16)

Уравнение

    (17)

определяет минимальное  и максимальное  расстояния от частицы до центра поля. Следует обратить внимание на то обстоятельство, что величины  и  зависят от   и , как от параметров рассматриваемой задачи. Из уравнения (12) сразу находим, что

    (18)

Разделяя переменные, получаем:

 (19)

Формула (19) определяет (в неявном виде) зависимость расстояния от частицы до центра поля в любой момент времени . Переписав уравнение (11) и (18) в виде

,           ,

получаем уравнение траектории:

(20)

Здесь  - начальный азимутальный угол. Формула (20) определяет уравнение траектории  частицы в плоскости  в полярных координатах. Таким образом, формулы (19) и (20) полностью решают задачу о движении частицы  в произвольном ЦС поле . вся сложность решения такого рода задач смещается из плоскости физической в математическую плоскость.

Из уравнения (17) находим точки поворота. Если это уравнение имеет всего один корень , то движение частицы инфинитно: её траектория, начинаясь в точке , пройдет через некоторое время точку наибольшего сближения  и затем уйдет на бесконечность. Если уравнение (17) имеет два корня  и , то движение частицы финитно. В этом случае траектория частицы целиком лежит внутри кольца , ограниченного окружностями  и .

Но это вовсе не означает, что при финитном движении траектория частицы непременно является замкнутой кривой. За время, в течение которого расстояние  изменяется от величины  до  и обратно до  , радиус вектор повернется на угол (согласно формуле (20)) на величину

.                               (21)

Условие замкнутости траектории выражается условием: . Тогда, через  повторений периода времени радиус вектор точки, сделав  полных оборотов, совпадет со своим первоначальным значением, т.е. траектория замкнется. Можно строго показать, что такая ситуация возможна только для двух потенциалов:  (задача Кеплера) и  (пространственный осциллятор).

В заключение этого раздела рассмотрим вопрос о возможности падения частицы на центр поля, когда поле носит характер притяжения.

Сначала рассмотрим простейший случай, когда . Это будет иметь место, когда либо начальная скорость равна нулю (), либо когда вектор  коллениарен вектору . Понятно, что во всех этих случаях движение будет прямолинейным: - это уравнение прямой в полярных координатах.

Если  или , то падение на центр неизбежно. Если же начальная скорость направлена от центра, то возможны два случая:

1. Уравнение  не будет иметь решения при . Тогда частица удалится на бесконечность.

2. Уравнение  будет имеет корень . Тогда траектория частицы будет состоять из двух частей. На первом участке частица будет удаляться от центра до расстояния . В точке  частица, имея нулевую скорость, под действием сил притяжения начнет двигаться в обратную сторону и в конечном итоге упадет на центр поля притяжения.

Наконец рассмотрим вопрос о возможности падения на центр в общем случае, когда . Наличие центробежной энергии, стремящейся при  к  по закону , делает обычно невозможным проникновения частиц к центру поля, даже если это поле притяжения. Теоретически, падение на центр возможно лишь тогда, если  достаточно быстро стремиться к  при . Перепишем условие, определяющее область допустимых расстояний, в виде:

    (22)

Необходимо, чтобы это условие выполнялось вплоть до точки . Полагая в последней формуле , запишем её так:

    (23)

Здесь учтено, что при , величина , независимо от значения полной энергии . Последнее неравенство может выполняться в двух случаях:

1.  Если ,   при     (24)

2.  Если ,     при     (25)

Конечно, полученные ограничения на вид потенциальной энергии, означают только, что при их выполнении падение частицы на центр возможно в принципе, т.е. они являются необходимыми условиями падения на центр поля. Но их выполнение вовсе не означает, что в процессе движения частица достигнет центра поля. Это зависит от начальных условий. Например, начальные условия в любом центральном поле можно выбрать так, чтобы частица вращалась по окружности вокруг центра поля. В этом случае падения на центр поля не будет, даже если установленные выше условия будут выполнены.

4

.

t=0

z

x

    y

r0

P0

O

0

0

r(t)

P(t)


 

А также другие работы, которые могут Вас заинтересовать

20598. Понятие о вакууме и давлении 368 KB
  Вакуумсостояние газа при котором его давление ниже атмосферного. Вакуум количественно измеряется абсолютным давлением газа. Свойства газа при низких давлениях изучаются физикой вакуума являющейся разделом молекулярнокинетической теории газов. Основные допущения используемые в физике вакуума можно сформулировать в следующем виде: газ состоит из отдельных молекул; существует постоянное распределение молекул газа по скоростям т.
20599. Основы кодирования речевых сигналов 376.5 KB
  Существующие алгоритмы сжатия информации можно разделить на две большие группы: 1 алгоритмы сжатия без потерь: алгоритм ЛемпеляЗива LempelZiv LZ; RLE Run Length Encoding; кодирование Хаффмена Huffman Encoding; 2 алгоритмы сжатия с потерями: JPEG Joint Photographic Expert Group; MJPEG; MPEG Motion Picture Expert Group. MPEG ориентирован на обработку видео. Возникновение стандартов MPEG Активная разработка методов и стандартов сжатия видеоданных началась с появлением цифровых видеосистем. Но когда речь идет о...
20600. Речевые кодеки абонентских терминалов СПРС и ПСС 480.5 KB
  Обработка речи осуществляется в рамках принятой системы прерывистой передачи речи DTX. DTX управляется детектором активности речи VAD который обеспечивает обнаружение и выделение интервалов передачи речи с шумом и шума без речи даже в тех случаях когда уровень шума соизмерим с уровнем речи. В состав системы DTX входит также устройство формирования комфортного шума который включается и прослушивается в паузах речи когда передатчик отключен.
20601. Оценка качества передачи речевых сигналов 75.5 KB
  Обычно к параметрическим вокодерным относят системы требующие скорости передачи меньшие 16 кбит с. Обычно для обеспечения меньшей скорости передачи требуется применение более сложных алгоритмов т.1 Метод кодирования Скорость передачи кбит с Стандарт Современные приложения ИКМ 64 МСЭТ G.
20602. Модемы систем подвижной связи 649.5 KB
  Однако объем передачи данных по таким сетям имеет тенденцию к быстрому увеличению.3 DQPSK n 4 Требуемое отношения сигнал шум дБ 9 16 Скорость преобразования речи Кбит с 13 65 8 Алгоритм преобразования речи RPE LTP VSELP Типовой радиус соты км 0535 0520 Технологическое преимущество цифровой сотовой связи позволяет увеличивать емкость сетей снижать стоимость и повышать надежность передачи данных. К таким решениям можно отнести: построение сетей GSM на принципах модели открытых систем и интеллектуальных сетей; применение эффективных...
20603. Понятие о защите информации от несанкционированного доступа 109 KB
  Говорить о безопасности сотовой связи в общем нельзя. Если бы не было необходимости в идентификации то он получил бы вместе с аппаратом и доступ к счету жертвы у оператора связи. Принцип работы A3 известен только операторам связи а также разработчикам и производителям всевозможного сотового оборудования. Шифрование данных У любого стандарта сотовой связи есть один большой недостаток.
20604. Перспективы развития СПРС и ПСС – переход к системам 3-го поколения 236.5 KB
  Перспективы развития СПРС и ПСС – переход к системам 3го поколения Прошло немногим более двух десятилетий с момента появления первых мобильных телефонов но мобильная связь уже подверглась существенным изменениям. Cистемы первого поколения основанные на аналоговом принципе использовались исключительно для телефонной связи и лишь впоследствии обзавелись некоторыми базовыми сервисами. Cистемы второго поколения включая стандарт GSM предоставляют улучшенное качество передачи и защиту сигнала дополнительные сервисы низкоскоростную...
20605. Принципы функционирования систем сотовой связи 490 KB
  Свое название они получили в соответствии с сотовым принципом организации связи согласно которому зона обслуживания территория города или региона делится на ячейки соты. Эти системы подвижной связи появившиеся сравнительно недавно являются принципиально новым видом систем связи так как они построены в соответствии с сотовым: принципом распределения частот по территории обслуживания территориальночастотное планирование и предназначены для обеспечения радиосвязью большого числа подвижных абонентов с выходом в телефонную сеть общего...
20606. Абонентские терминалы СПРС и ПСС 360.5 KB
  В верхней части аппарата обычно располагаются световой индикатор светодиод отображающий режим работы режим ожидания вызов включено и источник звукового сигнала звонок. При получении вызова о чем абонент оповещается звуковым сигналом звонком он манипулирует теми же клавишами. Во всех аппаратах на дисплее отображаются уровень принимаемого сигнала и степень разряда аккумуляторной батареи в большинстве из них имеется подсветка дисплея и клавиатуры. К стационарному аппарату обычно бывает возможно подключить телефонный аппарат...