19010

Движение в центральном поле. Финитное и инфинитное движение. Падение на центр

Лекция

Физика

Лекция 8. Движение в центральном поле. Финитное и инфинитное движение. Падение на центр Выберем начло координат в центре поля См. рисунок. В начальный момент времени частица находилась в какото точке имела импульс и следовательно имела относительно центра поля м...

Русский

2013-07-11

828 KB

57 чел.

Лекция 8. Движение в центральном поле. Финитное и инфинитное движение. Падение на центр

Выберем начло координат  в центре поля (См. рисунок). В начальный момент времени  частица находилась в како-то точке , имела импульс  и, следовательно, имела относительно центра поля момент импульса . Как нам уже известно, при движении в ЦС поле сохраняется момент импульса относительно центра поля:

   (1)

Следовательно, в каждый момент времени величины  и . Поэтому из закона сохранения момента импульса сразу следует, что траектория движение частицы в ЦС всегда остается в одной плоскости, перпендикулярной . Но это означает, что рассматриваемая задача имеет две степени свободы: s=2, а общее решение уравнений движения должно содержать четыре произвольные константы.Выберем ось  вдоль вектора , так, что

,       т.е.         (2)

При таком выборе оси  движение частицы будет происходить в плоскости . (см. рисунок).

Используем далее полярные координаты  и . В полярных координатах ф. Лагранжа имеет известный нам вид:

   (3)

Уравнения Лагранжа будут выглядеть так:

;                 (4)

;                   (5)

Поскольку ф. Лагранжа не зависит явно от угла  , то координата  является циклической. Поэтому из уравнения Лагранжа (5) сразу следует, что сохраняется обобщенный импульс:. Как нам известно, величина . Но при нашем выборе осей координат . Поэтому уравнение (5) выражает закон сохранения момента импульса относительно центра поля:

     (6)

Закон сохранения момента при плоском движении допускает наглядную геометрическую интерпретацию. Выражение  есть площадь сектора, образованными двумя бесконечно близкими радиус-векторами с углом  между ними и элементом дуги траектории. Поэтому закон сохранения момента импульса (6) можно записать в виде:

      (7)

Производную  называют секториальной скоростью, а закон сохранения момента импульса иногда называется интегралом площадей: за равные промежутки времени радиус-вектор движущейся точки описывает равные площади (второй закон Кеплера).

Из формулы (6) получаем, что

     (8)

Следовательно, угол  монотонно возрастает со временем, т.е. угловая скорость частицы . Из (8) сразу следует, что наибольшее значение угловая скорость достигает при наименьшем расстоянии частицы от центра поля:

   (9)

Полное решение задачи о движении в ЦС проще всего получить, используя законы сохранения энергии и импульса:

  (10)

Из второго уравнения (10) сразу находим угловую скорость

     (11)

Подставляя (11) в первое уравнение (10) получаем:

    (12)

Здесь  - так называемая «эффективная» потенциальная энергия частицы в ЦС поле:

   (13)

Величину  называют центробежной энергией. Соответствующая её центробежная сила всегда является силой отталкивания:

.                             (14)

Только в тех случаях, когда , величина эффективной потенциальной энергии совпадает с истинной потенциальной энергией частицы:

   (15)

Уравнение (12) для радиального движения частицы формально похоже на одномерное уравнение движение частицы с одной степенью свободы, изученное нами ранее. Однако следует помнить, что в рассматриваемой задаче величина  всегда положительна:  и точка  является центром поля. Кроме того, если , то это не точка остановки, как при истинном одномерном движении, а точка остановки радиального движения. Границы области движения (по расстоянию от центра) определяются условием:

    (16)

Уравнение

    (17)

определяет минимальное  и максимальное  расстояния от частицы до центра поля. Следует обратить внимание на то обстоятельство, что величины  и  зависят от   и , как от параметров рассматриваемой задачи. Из уравнения (12) сразу находим, что

    (18)

Разделяя переменные, получаем:

 (19)

Формула (19) определяет (в неявном виде) зависимость расстояния от частицы до центра поля в любой момент времени . Переписав уравнение (11) и (18) в виде

,           ,

получаем уравнение траектории:

(20)

Здесь  - начальный азимутальный угол. Формула (20) определяет уравнение траектории  частицы в плоскости  в полярных координатах. Таким образом, формулы (19) и (20) полностью решают задачу о движении частицы  в произвольном ЦС поле . вся сложность решения такого рода задач смещается из плоскости физической в математическую плоскость.

Из уравнения (17) находим точки поворота. Если это уравнение имеет всего один корень , то движение частицы инфинитно: её траектория, начинаясь в точке , пройдет через некоторое время точку наибольшего сближения  и затем уйдет на бесконечность. Если уравнение (17) имеет два корня  и , то движение частицы финитно. В этом случае траектория частицы целиком лежит внутри кольца , ограниченного окружностями  и .

Но это вовсе не означает, что при финитном движении траектория частицы непременно является замкнутой кривой. За время, в течение которого расстояние  изменяется от величины  до  и обратно до  , радиус вектор повернется на угол (согласно формуле (20)) на величину

.                               (21)

Условие замкнутости траектории выражается условием: . Тогда, через  повторений периода времени радиус вектор точки, сделав  полных оборотов, совпадет со своим первоначальным значением, т.е. траектория замкнется. Можно строго показать, что такая ситуация возможна только для двух потенциалов:  (задача Кеплера) и  (пространственный осциллятор).

В заключение этого раздела рассмотрим вопрос о возможности падения частицы на центр поля, когда поле носит характер притяжения.

Сначала рассмотрим простейший случай, когда . Это будет иметь место, когда либо начальная скорость равна нулю (), либо когда вектор  коллениарен вектору . Понятно, что во всех этих случаях движение будет прямолинейным: - это уравнение прямой в полярных координатах.

Если  или , то падение на центр неизбежно. Если же начальная скорость направлена от центра, то возможны два случая:

1. Уравнение  не будет иметь решения при . Тогда частица удалится на бесконечность.

2. Уравнение  будет имеет корень . Тогда траектория частицы будет состоять из двух частей. На первом участке частица будет удаляться от центра до расстояния . В точке  частица, имея нулевую скорость, под действием сил притяжения начнет двигаться в обратную сторону и в конечном итоге упадет на центр поля притяжения.

Наконец рассмотрим вопрос о возможности падения на центр в общем случае, когда . Наличие центробежной энергии, стремящейся при  к  по закону , делает обычно невозможным проникновения частиц к центру поля, даже если это поле притяжения. Теоретически, падение на центр возможно лишь тогда, если  достаточно быстро стремиться к  при . Перепишем условие, определяющее область допустимых расстояний, в виде:

    (22)

Необходимо, чтобы это условие выполнялось вплоть до точки . Полагая в последней формуле , запишем её так:

    (23)

Здесь учтено, что при , величина , независимо от значения полной энергии . Последнее неравенство может выполняться в двух случаях:

1.  Если ,   при     (24)

2.  Если ,     при     (25)

Конечно, полученные ограничения на вид потенциальной энергии, означают только, что при их выполнении падение частицы на центр возможно в принципе, т.е. они являются необходимыми условиями падения на центр поля. Но их выполнение вовсе не означает, что в процессе движения частица достигнет центра поля. Это зависит от начальных условий. Например, начальные условия в любом центральном поле можно выбрать так, чтобы частица вращалась по окружности вокруг центра поля. В этом случае падения на центр поля не будет, даже если установленные выше условия будут выполнены.

4

.

t=0

z

x

    y

r0

P0

O

0

0

r(t)

P(t)


 

А также другие работы, которые могут Вас заинтересовать

47347. Обчислення в середовищі MS Excel 1.96 MB
  Формули MS Excel та її складові елементи. Введення формул, їх заміна та пошук помилок. Друкування електронної таблиці. Захист робочих аркушів та робочих книг. Формули MS Excel та її складові елементи.
47348. Обчислення в середовищі MS Excel з використанням функцій 887.98 KB
  Поряд з розглянутими способами адресації комірок і діапазонів робочого аркуша, в MS Excel існує можливість посилання на комірки, діапазони,діаграми та інші об’єкти за допомогою імен, які визначає користувач. Взагалі кажучи, адреси комірок і діапазонів можна розглядати як імена, які надає їм MS Excel за замовчуванням.
47350. Расчет припусков на механическую обработку 59 KB
  Расчет припусков на обработку начинается с определения минимального припуска , (6) удаление которого с обрабатываемой поверхности технически необходимо для обеспечения требуемой точности и эксплуатационных свойств детали.
47351. Управління списками та базами даних в середовищі MS Excel 797.39 KB
  MS Excel як засіб організації бази даних. Способи введення даних у список та перевірки цих даних Засоби сортування даних списків Поняття структури та структуризації робочих листів. Автоматичне обчислення поміжних підсумків MS Excel як засіб організації бази даних. Способи введення даних у список та перевірки цих даних
47352. Болота. Особенности земляных работ в болотистых месностях 23.4 MB
  Проектирование автомобильных дорог в болотистых районах требуют предварительного изучения и исследования болота, важное значение имеет строение болота, условие формирования болота, а также соотношение прочности его слоёв. Согласно СНИП 2.05. 02 -85 различают 3 типа болот...
47353. Проектирование заготовки 108.5 KB
  Определить вид заготовки, используемый для изготовления данной детали; определение метода получения заготовки; является функцией специалиста – технолога литейщика или давленца; Наметить расположение плоскости разъема; которое определяет распределение напусков, формовочных, штамповочных уклонов;
47354. Фільтрація та консолідація даних в середовищі MS Excel 319.52 KB
  Пошук та фільтрація – це операції, які найчастіше виконуються над базами даних (списками). Для цього програмою MS Excel надається набір засобів.
47355. Аналіз даних в середовищі MS Excel 110.18 KB
  Ознайомити з засобами аналізу даних в середовищі MS Excel, можливостями аналізу за допомогою функцій і таблиць підстановок; набути навичок проведення аналізу за допомогою зведених таблиць...