19013

Кинематика и динамика упругого столкновения частиц. Переход в Ц-систему. Импульсные диаграммы. Связь углов рассеяния в Л- и Ц-системах

Лекция

Физика

Лекция 11. Кинематика и динамика упругого столкновения частиц. Переход в Цсистему. Импульсные диаграммы. Связь углов рассеяния в Л и Цсистемах Столкновение двух частиц называется упругим если оно не сопровождается изменением их внутреннего состояния в том числе не ...

Русский

2013-07-11

1.06 MB

49 чел.

Лекция 11. Кинематика и динамика упругого столкновения частиц. Переход в Ц-систему. Импульсные диаграммы. Связь углов рассеяния в Л- и Ц-системах

Столкновение двух частиц называется упругим, если оно не сопровождается изменением их внутреннего состояния, в том числе не изменяется их внутренняя энергия. Термин "столкновение" предполагает, что взаимодействие между частицами  происходит в течение какого-то ограниченного времени, после чего частицы движутся как свободные.

Процесс упругого столкновения можно проанализировать в рамках законов сохранения энергии и импульса. Эти результаты получались и подробно исследовались в курсе общей физики. Здесь мы интерпретируем их графически с помощью так называемых импульсных диаграмм. Ограничимся подробным рассмотрением простого, но важного и часто встречающегося случая, когда вторая частица до столкновения покоилась (в общем случае формулы очень громоздки), т.е.

,              (1)

В этом случае импульс системы и относительный импульс определяются импульсом первого тела

      и         (2)

Тогда импульсы те в системе центра инерции до и после столкновения равны:

,                     (3)

,                 (4)

( - приведенная масса). Кинетическая энергия в Ц-системе

    (5)

Тогда формулы для импульсов тел в Л-системе после столкновения можно записать в виде:

  (6)

  (7)

Рассмотрим три случая, которые отличаются друг от друга соотношением масс частиц  и .

1. Налетающая частица  легче покоящейся частицы , т.е.

Проведем следующие построения (См. рисунок). Отложим отрезок  . Из точки отложим отрезок . Тогда очевидно, что отрезок  будет представлять собой импульс налетающей частицы до столкновения: . Из точки  проведем окружность радиусом . Точка  будет лежать на этой окружности, а точка  будет находиться внутри круга, т.к. при  . Заметим, что отрезок , т.е. одновременно представляет собой импульс налетающей частицы в Ц - системе.

Рассмотрим на окружности произвольную точку . Отрезок  можно рассматривать как импульс первой частицы после столкновения в Ц - системе: , т.к. . Следовательно, угол  есть угол поворота первой частицы в Ц – системе. Тогда отрезок  есть импульс первой частицы после столкновения в Л – системе: .

Одновременно,  есть импульс второй частицы после столкновения в Л – системе: . Т.о. на одной векторной диаграмме удается одновременно представить векторы импульсов частиц до и после столкновений как в Л – системе, так и в Ц – системе. Именно это обстоятельство делает векторные импульсные диаграммы исключительно наглядными и позволяет установить из них связь между различными величинами в Л – и в Ц – системах. Например, из диаграммы сразу видно, что угол отклонения  первой частицы в Л – системе может изменяться во всем интервале , а угол отклонения  второй частицы в Л – системе может изменяться в интервале . Видно, что , когда , что имеет место при . При этом частицы разлетаются в разные стороны вдоль одной прямой: , а . Это соответствует "лобовому" столкновению частиц. При , . При этом , а . Это соответствует отсутствию столкновения частиц.

Установим связь между углами отклонения частиц  и  в Л – системе и углом поворота  в Ц – системе. Углы  и  представляют собой углы отклонения частиц после столкновения по отношению к направлению удара, т.е. по отношению к вектору налетающей частицы , т.е. по отношению к отрезку  на рисунке.

Сначала установим связь между углами  и .  Поскольку треугольник  равнобедренный, то . Отсюда сразу получаем, что

      (8)

Теперь установим связь между углами  и .  Из рисунка следуют соотношения:

Поскольку , а , то получаем

.

Эту формулу обычно записывают в виде:

   (9)

Угол , т.к. точка  лежит внутри круга. Поскольку , то при  угол разлета частиц   и  после столкновения меньше чем :

,             (10)

Рассмотрим случай "лобового" удара. Из диаграммы 1 видно, что в этом случае налетающая частица  полетит в сторону, противоположную её начальному направлению движения: . Точка  будет находиться на одном диаметре окружности слева от точки . Т.е. при "лобовом" столкновении . Поэтому

,     т.е.       ,

т.е.

    (11)

Следовательно

   (12)

Для покоящейся частицы при "лобовом" ударе , т.е.

    (13)

Следовательно,

   (14)

Если частица  до столкновения покоилась, то наибольшую энергию, которую может потерять налетающая частица, будет равна энергии, приобретенной второй частицей именно после "лобового" столкновения:

  (15)

Используя формулу  (15) легко получаем:

(16)

Здесь  - первоначальная энергия налетающей частицы.

Рассмотрим случай, когда налетающая частица  тяжелее покоящейся частицы , т.е. . В этом случае построение векторной импульсной диаграммы производится аналогично тому, как это делалось выше для случая . Отличие будет состоять только в том, что теперь точка  будет лежать вне круга радиуса , т.к. длина отрезка  будет больше , поскольку  (рис.10.6).

Такое, казалось бы, не столь большое отличие, приводит, однако, к существенному изменению результата взаимодействия частиц, по сравнению с рассмотренным выше случаем . В то время, как при  скорость первой частицы после столкновения могла иметь любое направление , теперь угол отклонения налетающей частицы  не может превышать некоторого максимального значения , так, что при  величина  может изменяться в пределах: . Значение угла  может легко определено из векторной диаграммы 2. Максимальному отклонению первой частицы в Л – системе соответствует такое положение точки , при котором прямая AС касается окружности в точке E.

Поскольку треугольник AEO – прямоугольный, то .

Поскольку , а , то сразу получаем, что

     (17)

Значению угла  соответствует угол поворота в Ц – системе , так, что .

обсудим значение угла разлета. Теперь угол , т.к. точка  лежит вне круга. Поскольку , то при  угол разлета частиц   и  после столкновения больше чем :

,             (18)

Кроме того, как это видно из диаграммы 2, одному и тому же значению угла  будет соответствовать два различных значения угла  в Ц – системе, т.к. прямая AC пересекает окружность в двух точках. Но это означает, что одному и тому же углу отклонения   будет соответствовать две различные пары значений импульсов  и . Кроме того, одному и тому же углу отклонения   будет соответствовать два различных значения угла .

Пусть теперь налетающая и покоящаяся частицы имеют одинаковую массу, т.е. , так, что . В этом случае векторная диаграмма имеет наиболее простой вид, т.к. отрезки  и  оказываются равными. Поэтому точки  и  будут лежать на противоположных концах диаметра (рис.3). B этом случае треугольник  является равнобедренным. Поэтому . Следовательно, в случае частиц  равных масс получаем:

;              ;                     (19)

Формула (19) для угла  получается конечно из общей формулы, если в ней положить :

Одинаковые частицы всегда разлетаются под прямым углом друг к другу. Это видно как из диаграммы 3, так и непосредственно из формул (19):

      (20)

4


O

A

B

Рис. 3. Импульсная диаграмма столкновения  частиц для случая .

Рис.2. Импульсная диаграмма столкновения  частиц для случая .

D

Рис. 1  Импульсная диаграмма столкновения

      частиц для случая .

C

B

O

D

A

E

n0

C

B

O

D

A

n0


 

А также другие работы, которые могут Вас заинтересовать

73827. Системы уравнений в линейной алгебре 467.5 KB
  Если это определение озвучить в терминах определителей то оно будет выглядеть примерно так: Матрица размера m×n имеет ранг r если существует хотя бы один отличный от нуля определитель rго порядка тогда как определитель любой подматрицы более высокого порядка равен нулю. Для вычисления ранга матрицы можно использовать метод элементарных преобразований строк и столбцов в точности тот самый метод который применяется для вычисления определителей. Целью элементарных преобразований является приведение матрицы к...
73828. Модель затраты- выпуск (модель В. Леонтьева) 121 KB
  Либо не весь объём производства расходуется на потребление и его достаточно для расширения производства тех видов продукции на которые имеется растущий спрос либо объём производства недостаточен для воспроизводства трудового ресурса на постоянном уровне. Свойство наличия баланса состоит как раз в том что полные объёмы всей продукции складываются только из объёмов её конечного потребления и объёмов потребления продукции в производственных процессах межотраслевых потоков. Примером такой взаимосвязи может служить например потребление с х...
73829. Комплексные числа 388 KB
  Определение комплексного числа. Первая компонента комплексного числа действительное число называется действительной частью числа это обозначается так; вторая компонента действительное число называется мнимой частью числа. Два комплексных числа и равны тогда и только тогда когда равны их действительные и мнимые части.
73830. Многочлены -ой степени 536.5 KB
  Многочленом ой степени называется функция где постоянные комплексные числа коэффициенты многочлена комплексная переменная. Число в котором многочлен принимает нулевое значение называется корнем многочлена. Представим в виде многочлена по степеням. Очевидно отсюда следует утверждение: для того чтобы число было корнем многочлена необходимо и достаточно чтобы коэффициент при нулевой степени в разложении по степеням был равен нулю: .
73831. Линейные пространства 451.5 KB
  Обозначим множества векторов направленных отрезков на прямой на плоскости в пространстве соответственно с обычными операциями сложения векторов и умножения векторов на число. Вместо свободных векторов можно рассмотреть соответствующие множества радиус-векторов. Например множество векторов на плоскости имеющих общее начало т. Множество радиус-векторов единичной длины не образует линейное пространство так как для любого из этих векторов сумма не принадлежит рассматриваемому множеству.
73832. Проектирование операционных технологических процессов обработки заготовок 67.5 KB
  обработки позволяет правильно выбрать станок из имеющегося парка или по каталогу. По типу обработки устанавливают группу станков: токарный сверлильный В соответствии с назначением станка его компоновкой степенью автоматизации определяют тип станка: токарный одношпиндельный многошпиндельный револьверный полуавтомат и т. Если эти требования выполнимы на различных станках то при выборе учитывают следующие факторы: 1 соответствие основных размеров станка габаритным размерам обрабатываемой заготовки или нескольких одновременно...
73833. Анализ технологичности конструкции деталей 43 KB
  Ее следует отрабатывать на технологичность комплексно учитывая зависимость технологичности от следующих факторов: исходной заготовки вида обработки технологичности СЕ в которую эта деталь входит. Конструкция должна быть такой чтобы для ее изготовления можно было применять высокопроизводительные методы обработки. Повышение технологичности конструкции изделия предусматривает проведение следующих мероприятий: Создание конфигурации деталей и подбор их материалов позволяющих применение наиболее совершенных исходных заготовок сокращающих объем...
73834. Выбор вариантов схем базирования 40.5 KB
  Для создания возможности повышения уровня концентрации обработки в операции и снижения разнообразия технологической оснастки лучше принять в качестве базы для обработки всех поверхностей детали одну и туже базу Е. Синтез маршрута обработки заготовки Первый шаг синтеза маршрута обработки заготовки распределение отобранных переходов обработки типовых поверхностей заготовки по этапам типовой схемы изготовления деталей соответствующего класса или подкласса. Типовая схема обработки является вариантом полного типового решения. Причиной...
73835. Проектирование маршрутных технологических процессов механической обработки 52 KB
  Маршрутное описание ТП заключается в сокращенном описании всех технологических операций в маршрутной карте в последовательности их выполнения без переходов и технологических режимов. Операционное описание ТП характеризуется полным описанием всех технологических операций в последовательности их выполнения с указанием переходов и технологических режимов. Маршрутнооперационным описанием ТП называют сокращенное описание технологических операций в маршрутной карте в последовательности их выполнения с полным описанием отдельных операций в других...