19015

Малые одномерные колебания (свободные и вынужденные). Вынужденные колебания под действием произвольной силы

Лекция

Физика

Лекция 13. Малые одномерные колебания свободные и вынужденные. Вынужденные колебания под действием произвольной силы. Вынужденные колебания под действием гармонической силы. Резонанс. Затухающие колебания Распространенным движением в природе являются колебания те

Русский

2013-07-11

2.55 MB

32 чел.

Лекция 13. Малые одномерные колебания (свободные и вынужденные). Вынужденные колебания под действием произвольной силы. Вынужденные колебания под действием гармонической силы. Резонанс. Затухающие колебания

Распространенным движением в природе являются колебания тела относительно положения устойчивого равновесия. Здесь мы рассмотрим простейший случай, когда система имеет всего одну степень свободы: , .  

Начнем рассмотрение с изучения свободных одномерных колебаний, когда на систему не действуют внешние силы. В этом случае система замкнута, и её энергия сохраняется. Функция Лагранжа такой системы имеет вид:

    (1)

Устойчивому положению равновесия соответствует такое состояние системы, в котором его потенциальная энергия  имеет минимум (пример такой функции приведен на рисунке). Всякое отклонение от положения равновесия приводит к возникновению силы,  (), которая стремиться вернуть систему обратно. Пусть функция  имеет минимум при . При малых отклонениях от положения равновесия величину  можно разложить в ряд по величине разности :

  (2)

Примем за начало отсчета потенциальной  энергии её значение в минимуме, т.е. будем считать, что  . В точке минимума

,   а       (3)

Малость отклонения от положения равновесия, позволяет считать, что

    (4)

Коэффициент  совпадает с массой частицы, если  есть декартова координата. С учетом всего сказанного функция Лагранжа (1) будет выглядеть так:

    (5)

Обозначим отклонение от положения равновесия

     (6)

Тогда

     (7)

Это и есть, в самом общем виде ф. Лагранжа для малых, свободных одномерных колебаний. Коэффициенты  и   определяются формулами (3) и (4). Уравнение Лагранжа

             (8)

Вводя обозначение

      (9)

получаем уравнение движения для малых одномерных колебаний:

    (10)

Решение уравнения (10) можно записать в виде

  (11)

Скорость частицы

 (12)

Величина  называется амплитудой колебаний. Величина  называется фазой колебаний, а  - начальной фазой, величина которой зависит от выбора начала отсчета времени. Величина  называется циклической частотой, или просто частотой колебаний. Согласно формуле (9) частота колебаний полностью определяется только свойствами механической системы и не зависит от начальных условий. Поэтому частота является фундаментальной характеристикой процесса гармонических колебаний. Подчеркнем, однако, что это свойство частоты связано с тем, что в разложении потенциальной энергии в ряд мы ограничились членами до второго порядка малости . Это свойство исчезает при учете членов разложения более высокого порядка – ангармонические колебания, и, конечно, не имеет места, если в точке минимума  обращается в ноль.

Поскольку , то, приравнивая коэффициенты при величинах  и  , получаем:

            ;          (13)

Формулы (13) устанавливают связь между постоянными ,  и величинами  и .

Вычислим значения  и  при произвольных начальных условиях. Полагая в формулах (11) и (12) , получим:

;           (14)

Следовательно, амплитуда колебаний

     (15)

В заключение этого раздела сделаем следующее полезное замечание. Зависимость  удобно представить в виде реальной части простого комплексного выражения:

     (16)

Здесь - комплексная амплитуда, модуль которой совпадает с обычной амплитудой , а аргумент с начальной фазой:

      (17)

Представление колебательного движения в комплексной форме удобно тем, что при многократном  дифференцировании по времени комплексная экспонента не изменяет своего вида, в отличие от тригонометрических функций. При этом, пока производятся лишь линейные операции (сложение, умножение на комплексные числа, дифференцирование, интегрирование), можно при всех промежуточных операциях вообще опускать знак взятия реальной части. Переход к реальной части можно осуществить лишь на последнем шаге вычислений, когда необходимо записать результат вычислений в обычной действительной форме.

Рассмотрим колебания в системе с одной степенью свободы, на которую действует внешнее поле, зависящее от времени. Теперь, наряду с собственной потенциальной энергией  возникает дополнительная потенциальная энергия , связанная с наличием внешнего поля. Разлагая  в ряд в окрестности точки  по малой величине , получим:

   (18)

Первый член разложения всегда можно представить как полную производную по , от некоторой функции времени. Поэтому его можно опустить в функции Лагранжа. Величина

   (19)  

есть внешняя сила, зависящая только от времени. Поэтому функция Лагранжа принимает вид:

    (20)

Соответственно уравнение для малых одномерных, вынужденных колебаний и начальные условия будут выглядеть так:

     (21)

Здесь по-прежнему  - частота собственных колебаний. Таким образом, наличие внешней силы приводит к тому, что уравнение малых колебаний становится неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами.

Из курса дифференциальных уравнений известно, что общее решение неоднородного линейного дифференциального уравнения есть сумма общего решения однородного уравнения и любого частного решения неоднородного уравнения:

    (22)

Решение однородного уравнения, удовлетворяющее начальным условиям, было получено в предыдущем разделе. Следовательно, осталось получить частное решение неоднородного уравнения, которое бы обращалось в ноль при .

Найдем зависимость координаты колеблющегося тела от времени для периодической вынуждающей силы , где  - частота вынуждающей силы. Ищем частное решение неоднородного дифференциального уравнения

    (23)

в виде:

     (24)

где  - пока неизвестная величина. Подставляя функцию (24) в уравнение, находим

и, следовательно, для вынужденных колебаний

   (25)

Произвольные постоянные  и  нужно определить из начальных условий. Решение (25) теряет смысл в случае резонанса, когда . В этом случае легко проверить, что частным решением неоднородного уравнения будет следующая функция

то есть в случае резонанса амплитуда колебаний линейно растет со временем.

Рассмотрим теперь колебания тела в среде, когда происходит диссипация механической энергии в тепловую. Ясно, что в этом случае амплитуда колебаний должна уменьшаться, а вся энергия тела в конце концов перейти в тепло.

Процесс движения в таких условиях не является уже чисто механическим, поскольку его рассмотрение требует учета движения самой среды. Однако если частота колебания тела мала по сравнению с характерными частотами внутренних процессов, можно считать, что на тело действует сила трения, зависящая только от скорости тела. Если эта скорость мала (по сравнению с характерной скоростью в среде), то разложение силы трения по степеням скорости будет содержать одно слагаемое и

      (26)

Добавляя эту силу в правую часть уравнений движения, получаем

    (27)

Введем обозначение  и получим из (27)

    (28)

Ищем решение уравнения (28) в виде  и получаем для  характеристическое уравнение

    (29)

откуда находим

    (30)

Если  (малое затухание), то решение имеет вид

   (31)

где ,  и  - произвольные постоянные. Выражение (31) описывает затухающие колебания: его можно рассматривать как гармоническое колебание с экспоненциально затухающей амплитудой. Скорость убывания амплитуды определяется величиной , которую принято называть коэффициентом затухания. Частота затухающих колебаний меньше частоты свободных колебаний в отсутствие трения.

Если  (большое затухание), то решение имеет вид

   (32)

где  и  - произвольные постоянные. Выражение (31) описывает движение, которое состоит в экспоненциальном приближении тела к равновесию без всяких колебаний. Такое движение принято называть апериодическим затуханием.

5

q

U


 

А также другие работы, которые могут Вас заинтересовать

14468. ФОРМИРОВАНИЕ ВНЕШНЕПОЛИТИЧЕСКИЕ КУРСА В США. РОЛЬ СОВЕТА НАЦИОНАЛЬНОЙ БЕЗОПАСНОСТИ. СТРУКТУРА СНБ 18.91 KB
  ФОРМИРОВАНИЕ ВНЕШНЕПОЛИТИЧЕСКИЕ КУРСА В США. РОЛЬ СОВЕТА НАЦИОНАЛЬНОЙ БЕЗОПАСНОСТИ. СТРУКТУРА СНБ. Разработкой и проведением американской внешней политики согласованием позиций различных ведомств и координацией их международной деятельности занимается Совет нац
14469. РЕФОРМИРОВАНИЕ ВНЕШНЕПОЛИТИЧЕСКОГО КУРСА США В ПЕРИОД ПЕРВОГО ПРЕЗИДЕНСТВА Б.ОБАМЫ. СРАТЕГИЯ НАЦИОНАЛЬНОЙ БЕЗОПАСНОСТИ – 2010 18.5 KB
  РЕФОРМИРОВАНИЕ ВНЕШНЕПОЛИТИЧЕСКОГО КУРСА США В ПЕРИОД ПЕРВОГО ПРЕЗИДЕНСТВА Б.ОБАМЫ. СРАТЕГИЯ НАЦИОНАЛЬНОЙ БЕЗОПАСНОСТИ 2010. С приходом к власти Барак Обама определил задачи во внешней политике в качестве основных для своей администрации. Большинство американски
14470. Исторические этапы формирования основных принципов внешней политики США 17.92 KB
  Исторические этапы формирования основных принципов внешней политики США. Внешняя политика США стала оформляться лишь в 20е годы 19 века. Знаковым явлением в данном процессе стала известная доктрина Монро. 2 декабря 1823 г. американский президент Джеймс Монро изложил в
14471. Государственный департамент США. «Четырехлетний обзор дипломатии и развития международных отношений.2010» 18.57 KB
  Государственный департамент США. Четырехлетний обзор дипломатии и развития международных отношений.2010. Государственный департамент образован в 1789 году вместе с ним в этом же году появляется пост государственного секретаря. ГосДеп Государственный департамент явл...
14472. Становление ОВПБ 21.06 KB
  Становление ОВПБ Первая попытка интеграции была предпринята в начале 1952 года Франция ФРГ Италия и Бельгия Нидерланды Люксембург подписали договор об учреждении Европейского Оборонительного сообщества ЕОС. Однако парламент Франции заблокировал создание ЕОС. Интег...
14473. Реформа внешнеполитической деятельности ЕС по Лиссабонскому договору 17.07 KB
  Реформа внешнеполитической деятельности ЕС по Лиссабонскому договору Лиссабонский договор был подписан в декабре 2007 г. и вступил в силу в декабре 2009 г. В соответствии с этим договором проводится модернизация внешней политики Европейского Союза. Договор вводит должн
14474. Структура и деятельность Европейского внешнеполитического ведомства. Основные проблемы внешнеполитической деятельности ЕС на современном этапе 17.67 KB
  Структура и деятельность Европейского внешнеполитического ведомства. Основные проблемы внешнеполитической деятельности ЕС на современном этапе. Европейское внешнеполитическое ведомство EEAS: European External Action Service отдел ЕС который был создан после вступления в силу Лис...
14475. Основные финансовые инструменты внешней политики ЕС 17.89 KB
  Основные финансовые инструменты внешней политики ЕС Внешняя политика ЕС развивается в рамках чётко определённых региональных и тематических инструментов. Финансирование внешней политики имеет как бюджетную так и внебюджетную природу. Инструменты внешней политики ...
14476. Международные санкции как инструмент внешней политики ЕС и США 23.56 KB
  Международные санкции как инструмент внешней политики ЕС и США. Впервые санкции были использованы в Версальском мирном договоре. Санкции как политический инструмент использовались еще с 19 века. Как инструмент были оформлены в уставе Лиги Наций 1920г ст 16 Устав предо