19015

Малые одномерные колебания (свободные и вынужденные). Вынужденные колебания под действием произвольной силы

Лекция

Физика

Лекция 13. Малые одномерные колебания свободные и вынужденные. Вынужденные колебания под действием произвольной силы. Вынужденные колебания под действием гармонической силы. Резонанс. Затухающие колебания Распространенным движением в природе являются колебания те

Русский

2013-07-11

2.55 MB

31 чел.

Лекция 13. Малые одномерные колебания (свободные и вынужденные). Вынужденные колебания под действием произвольной силы. Вынужденные колебания под действием гармонической силы. Резонанс. Затухающие колебания

Распространенным движением в природе являются колебания тела относительно положения устойчивого равновесия. Здесь мы рассмотрим простейший случай, когда система имеет всего одну степень свободы: , .  

Начнем рассмотрение с изучения свободных одномерных колебаний, когда на систему не действуют внешние силы. В этом случае система замкнута, и её энергия сохраняется. Функция Лагранжа такой системы имеет вид:

    (1)

Устойчивому положению равновесия соответствует такое состояние системы, в котором его потенциальная энергия  имеет минимум (пример такой функции приведен на рисунке). Всякое отклонение от положения равновесия приводит к возникновению силы,  (), которая стремиться вернуть систему обратно. Пусть функция  имеет минимум при . При малых отклонениях от положения равновесия величину  можно разложить в ряд по величине разности :

  (2)

Примем за начало отсчета потенциальной  энергии её значение в минимуме, т.е. будем считать, что  . В точке минимума

,   а       (3)

Малость отклонения от положения равновесия, позволяет считать, что

    (4)

Коэффициент  совпадает с массой частицы, если  есть декартова координата. С учетом всего сказанного функция Лагранжа (1) будет выглядеть так:

    (5)

Обозначим отклонение от положения равновесия

     (6)

Тогда

     (7)

Это и есть, в самом общем виде ф. Лагранжа для малых, свободных одномерных колебаний. Коэффициенты  и   определяются формулами (3) и (4). Уравнение Лагранжа

             (8)

Вводя обозначение

      (9)

получаем уравнение движения для малых одномерных колебаний:

    (10)

Решение уравнения (10) можно записать в виде

  (11)

Скорость частицы

 (12)

Величина  называется амплитудой колебаний. Величина  называется фазой колебаний, а  - начальной фазой, величина которой зависит от выбора начала отсчета времени. Величина  называется циклической частотой, или просто частотой колебаний. Согласно формуле (9) частота колебаний полностью определяется только свойствами механической системы и не зависит от начальных условий. Поэтому частота является фундаментальной характеристикой процесса гармонических колебаний. Подчеркнем, однако, что это свойство частоты связано с тем, что в разложении потенциальной энергии в ряд мы ограничились членами до второго порядка малости . Это свойство исчезает при учете членов разложения более высокого порядка – ангармонические колебания, и, конечно, не имеет места, если в точке минимума  обращается в ноль.

Поскольку , то, приравнивая коэффициенты при величинах  и  , получаем:

            ;          (13)

Формулы (13) устанавливают связь между постоянными ,  и величинами  и .

Вычислим значения  и  при произвольных начальных условиях. Полагая в формулах (11) и (12) , получим:

;           (14)

Следовательно, амплитуда колебаний

     (15)

В заключение этого раздела сделаем следующее полезное замечание. Зависимость  удобно представить в виде реальной части простого комплексного выражения:

     (16)

Здесь - комплексная амплитуда, модуль которой совпадает с обычной амплитудой , а аргумент с начальной фазой:

      (17)

Представление колебательного движения в комплексной форме удобно тем, что при многократном  дифференцировании по времени комплексная экспонента не изменяет своего вида, в отличие от тригонометрических функций. При этом, пока производятся лишь линейные операции (сложение, умножение на комплексные числа, дифференцирование, интегрирование), можно при всех промежуточных операциях вообще опускать знак взятия реальной части. Переход к реальной части можно осуществить лишь на последнем шаге вычислений, когда необходимо записать результат вычислений в обычной действительной форме.

Рассмотрим колебания в системе с одной степенью свободы, на которую действует внешнее поле, зависящее от времени. Теперь, наряду с собственной потенциальной энергией  возникает дополнительная потенциальная энергия , связанная с наличием внешнего поля. Разлагая  в ряд в окрестности точки  по малой величине , получим:

   (18)

Первый член разложения всегда можно представить как полную производную по , от некоторой функции времени. Поэтому его можно опустить в функции Лагранжа. Величина

   (19)  

есть внешняя сила, зависящая только от времени. Поэтому функция Лагранжа принимает вид:

    (20)

Соответственно уравнение для малых одномерных, вынужденных колебаний и начальные условия будут выглядеть так:

     (21)

Здесь по-прежнему  - частота собственных колебаний. Таким образом, наличие внешней силы приводит к тому, что уравнение малых колебаний становится неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами.

Из курса дифференциальных уравнений известно, что общее решение неоднородного линейного дифференциального уравнения есть сумма общего решения однородного уравнения и любого частного решения неоднородного уравнения:

    (22)

Решение однородного уравнения, удовлетворяющее начальным условиям, было получено в предыдущем разделе. Следовательно, осталось получить частное решение неоднородного уравнения, которое бы обращалось в ноль при .

Найдем зависимость координаты колеблющегося тела от времени для периодической вынуждающей силы , где  - частота вынуждающей силы. Ищем частное решение неоднородного дифференциального уравнения

    (23)

в виде:

     (24)

где  - пока неизвестная величина. Подставляя функцию (24) в уравнение, находим

и, следовательно, для вынужденных колебаний

   (25)

Произвольные постоянные  и  нужно определить из начальных условий. Решение (25) теряет смысл в случае резонанса, когда . В этом случае легко проверить, что частным решением неоднородного уравнения будет следующая функция

то есть в случае резонанса амплитуда колебаний линейно растет со временем.

Рассмотрим теперь колебания тела в среде, когда происходит диссипация механической энергии в тепловую. Ясно, что в этом случае амплитуда колебаний должна уменьшаться, а вся энергия тела в конце концов перейти в тепло.

Процесс движения в таких условиях не является уже чисто механическим, поскольку его рассмотрение требует учета движения самой среды. Однако если частота колебания тела мала по сравнению с характерными частотами внутренних процессов, можно считать, что на тело действует сила трения, зависящая только от скорости тела. Если эта скорость мала (по сравнению с характерной скоростью в среде), то разложение силы трения по степеням скорости будет содержать одно слагаемое и

      (26)

Добавляя эту силу в правую часть уравнений движения, получаем

    (27)

Введем обозначение  и получим из (27)

    (28)

Ищем решение уравнения (28) в виде  и получаем для  характеристическое уравнение

    (29)

откуда находим

    (30)

Если  (малое затухание), то решение имеет вид

   (31)

где ,  и  - произвольные постоянные. Выражение (31) описывает затухающие колебания: его можно рассматривать как гармоническое колебание с экспоненциально затухающей амплитудой. Скорость убывания амплитуды определяется величиной , которую принято называть коэффициентом затухания. Частота затухающих колебаний меньше частоты свободных колебаний в отсутствие трения.

Если  (большое затухание), то решение имеет вид

   (32)

где  и  - произвольные постоянные. Выражение (31) описывает движение, которое состоит в экспоненциальном приближении тела к равновесию без всяких колебаний. Такое движение принято называть апериодическим затуханием.

5

q

U


 

А также другие работы, которые могут Вас заинтересовать

21457. Матричная экспонента 394 KB
  а матрица j й столбец которой есть решение системы 1а с начальными условиями т. матрица имеет вид и удовлетворяет уравнению Тогда вектор t решение системы 1а с начальным условием может быть записан в виде т. Запишем теперь jе решение уравнения 1а удовлетворяющее начальному условию где диагональная матрица вектор столбец коэффициентов и положим где матрица коэффициентов . Теперь окончательно имеем...
21458. Спектральные приборы 519 KB
  различаются методами спектрометрии приёмниками излучения исследуемым рабочим диапазоном длин волн и др. Форма отверстия в равномерно освещенном экране 1 соответствует функции f описывающей исследуемый спектр распределение энергии излучения по длинам волн . группа 2 информация об исследуемом спектре получается путём одновременной регистрации без сканирования по  несколлькими приёмниками потоков излучения разных длин волн    .
21459. Управление света светом 870.5 KB
  ставит очень амбициозную задачу создание устройств выполняющих функции управления характеристиками оптического излучения с помощью другого оптического излучения. Предлагается воспользоваться свойствами поляризованного электромагнитного оптического излучения а именно использовать эффект оптического гашения который описан например в [3]. 1 Если четвертьволновую пластинку P1 установить так чтобы её быстрая ось была ориентирована под углом к оси OX то для излучения прошедшего через пластинку P1 получим = 1 = . 2 Согласно [4]...
21460. Применение лазерного излучения для управления движением атомами и ионами 789.5 KB
  Этот эффект называется охлаждением атомов давлением лазерного излучения. Методы позволяющие с помощью лазерного излучения охлаждать атомы основаны на эффекте вязкой жидкости оптическая патока в которой атомы медленно перемещаются. При охлаждении вещества его энергия и энтропия понижаются поэтому процесс охлаждения возможен если энергия и энтропия излучения после взаимодействия с веществом повышаются.
21461. Лазерный пинцет 957 KB
  Сила с которой свет действует на окружающие объекты невелика но ее оказывается достаточно чтобы ловить и контролируемо перемещать частицы размером от 10 нм до 10 мкм. В дальнейшем Эшкин и его коллеги продемонстрировали возможности оптической ловушки на основе инфракрасного лазера захватывать удерживать и перемещать в пространстве различные биологические объекты такие как вирусные частицы одиночные бактериальные и дрожжевые клетки и органеллы в живых клетках водорослей. Как будет вести себя частица в поле после Пишейпера В случаях...
21462. Прецизионные волоконно-оптические датчики 333 KB
  100 Мрад Последовательного и параллельного типа Распределение температуры и деформации Обратное рассеяние Релея Интенсивность обратного рассеяния Релея Многомодовое Разрешающая способность 1 м Условия реализации волоконных датчиков связаны с наличием оптической комплектации: оптическое волокно в различных спектральных диапазонах. Соединительные и разделительные фильтры Многослойники дифракционные решетки; модуляторы интенсивности на основе электрооптического эффекта ниобат лития обладающий электрооптическими свойствами которые...
21463. Импульсный оптический рефлектометр 479 KB
  Введение Импульсные оптические рефлектометры OTDR Opticl Time Domin Reflectometer различных типов широко используются практически на всех этапах создания волоконнооптических систем связи: от производства волокна и оптического кабеля до строительства волоконнооптических линий связи ВОЛС и их эксплуатации. Измерять средние потери оптического волокна на катушках равномерность распределения потерь в волокне и выявлять наличие локальных дефектов при производстве волокна. Обнаруживать постепенное или внезапное ухудшение качества волокна...
21464. Анализ современного состояния техники ранней диагностики ВОЛП 706 KB
  Очевидно что длины волн используемые для передачи данных и для рефлектометрического контроля волокна в этом случае должны быть разными. В этой точке устанавливается оптический коммутатор OTU который по очереди включает волокна всех направлений в оптический путь сигналов рефлектометра RTU. Другой подход предполагает одновременное распространение сигнала рефлектометра по всем ответвляющимся волокнам. Согласно данным фирмы Fujikur по степени опасности для волокна можно выделить три диапазона значений его относительного удлинения.
21465. Двухчастотные лазерные интерферометры 1.42 MB
  Все оснащение лазерной измерительной головки заключающееся в системе программного и инструментального обеспечения измерения предназначено для линейных и угловые измерений измерения плоскостности измерения прямолинейности измерения взаимоперпендикулярности и измерения скорости перемещения. Дискрет измерения равен  при статистической обработке сигнала fd его можно уменьшить в 10 раз. Таким образом дискретность измерения интерферометра не превышает 001 мкм. Чтобы исключить ошибку связанную с температурным расширением основания на...