19016

Малые колебания системы со многими степенями свободы. Собственные частоты и нормальные координаты

Лекция

Физика

Лекция 14. Малые колебания системы со многими степенями свободы. Собственные частоты и нормальные координаты Рассмотрим случай малых колебаний системы частиц имеющей степеней свободы. Самый общий вид функции Лагранжа такой системы таков: 1 2 Устойч

Русский

2013-07-11

459.5 KB

43 чел.

Лекция 14. Малые колебания системы со многими степенями свободы. Собственные частоты и нормальные координаты

Рассмотрим случай малых колебаний системы частиц, имеющей   степеней свободы. Самый общий вид функции Лагранжа такой системы таков:

 (1)

       (2)

Устойчивому положению равновесия соответствует такое состояние системы, в котором её потенциальная энергия  имеет минимум. Малые отклонения от положения равновесия приводят к возникновению сил, которые стремятся вернуть систему обратно в состояние равновесия. Пусть  имеет минимум при . При малых отклонениях от положения равновесия потенциальную энергию  можно разложить в ряд Тейлора по величинам разности

,           (3)

которые представляют собой малые отклонения от положения равновесия системы. Ограничимся в этом разложении членами второго порядка малости:

  (4)

Примем за начало отсчета потенциальной  энергии её значение в минимуме, т.е. будем считать, что  . В точке минимума

      (5)

Обозначим

,          (6)

Из (6) следует, что коэффициенты  симметричны относительно перестановки индексов:

      (7)

С учетом всего сказанного, выражение для потенциальной энергии (4) для потенциальной энергии вблизи положения равновесия  принимает простой вид:

   (8)

Теперь упростим выражение для кинетической энергии в функции Лагранжа (15.2). Поскольку величины  уже являются величинами второго порядка малости, то в силу малости отклонения от положения равновесия, в рамках рассматриваемой точности можно считать, что

   (9)

Постоянные коэффициенты , так же как и величины  симметрии величины относительно перестановки индексов: . С учетом всего сказанного функция Лагранжа (1) будет выглядеть так:

   (10)

Теперь запишем систему  уравнений Лагранжа для функции Лагранжа (10):

;           (11)

Вычисляя производные  и :

      (12)

      (13)

и подставляя их в уравнения Лагранжа, получаем:

,        (14)

Здесь мы переобозначили индексы суммирования , чтобы уравнения движения имели более привычный вид. Или в развернутом виде:

   (15)

Система дифференциальных уравнений (15) и есть уравнения движения для малых колебаний системы с  степенями свободы для величин , ,……..

Ищем решение системы в комплексном виде:

     (16)

Здесь  некоторые, пока неизвестные комплексные постоянные: . Подставляя (16) в систему уравнений (15), получаем после сокращения на общий множитель  систему линейных однородных алгебраических уравнений, которым должны удовлетворять постоянные :

;  ,        (17)

Для того, чтобы эта система однородных уравнений имела отличные от нуля решения, необходимо, чтобы её определитель обращался в ноль:

,               (18)

( - номер строки;  - номер столбца).

Уравнение (18) называется характеристическим уравнением. Оно представляет собой алгебраическое уравнение порядка  относительно величин . В общем случае оно имеет  различных и положительных корней: , где . Определенные из уравнения (18) величины  называются собственными частотами системы.

Согласно уравнению (18), собственные частоты колебаний полностью определяется только свойствами механической системы (коэффициентами  и ), и не зависят от начальных условий (и соответственно от амплитуд колебаний).

После того, когда все собственные частоты  определены, можно частично определить значения коэффициентов . Если все частоты различны, то значения величин  пропорциональны минорам определителя (15.21), в котором нужно заменить  на величину . Каждому значению координаты  будет соответствовать свой минор :

     (19)

( - номер строки;  - номер столбца). Тогда частное решение будет иметь вид:

,        .                        (20)

Здесь  - произвольные комплексные постоянные.

Общее решение системы уравнений (15) есть суперпозиция частных решений (20). Переходя как обычно к вещественной части общее решение можно записать в виде (миноры  величины действительные):

,       (21)

Здесь обозначено

     (22)

Общее решение (21) содержит  неизвестных постоянных  и . Эти постоянные определяются из начальных условий:

;   ;    ;      (23)

Из формулы (23) видно, что изменение каждой из координат  со временем представляет собой наложение  простых гармонических колебаний , ,……. с произвольными амплитудами и фазами (которые определяются из начальных условий), но имеющих вполне определенные частоты , ,……., которые от начальных условий не зависят.

Как уже отмечалось ранее, из формулы (21) следует, что изменение каждой из координат  со временем представляет собой наложение  простых гармонических колебаний  с произвольными амплитудами и фазами, но имеющими вполне определенные частоты . Но это означает, что всегда от обобщенных координат  можно перейти к новым обобщенным координатам, чтобы каждая из них соответствовала только одной собственной частоте . Ясно, что новыми обобщенными координатами и будут величины , ,…….. Это непосредственно следует из самого вида общего решения (21). Действительно, рассматривая  соотношений (21) как систему  уравнений относительно неизвестных , можно выразить все старые обобщенные координаты  через величины ,…….:

     (24)

Но это как раз и означает, что величины  можно рассматривать как новые обобщенные координаты. Эти координаты называются нормальными координатами (или главными), а совершаемые ими простые гармонические колебания – нормальными колебаниями системы, которым соответствуют нормальные частоты . Поскольку каждая нормальная координата меняется по гармоническому закону , то каждая из величин  удовлетворяет обычному уравнению для одномерных гармонических колебаний

,            (25)

Сказанное выше означает, что в нормальных координатах система уравнений (15) распадается на  независимых друг от друга уравнений, с независимыми начальными условиями. Другими словами, нормальные координаты полностью независимы друг от друга. Последнее означает, что функция Лагранжа (15.13), выраженная через нормальные координаты , может быть представлена как сумма функций Лагранжа для каждой нормальной координаты

 (26)

Здесь  - положительные постоянные.

Сказанное выше фактически означает, что и потенциальная и кинетическая энергия

;      ;   ,

могут быть одновременно приведены к диагональному виду.

Обычно нормальные координаты принято выбирать таким образом, чтобы коэффициенты  в функции Лагранжа (26) отсутствовали. Для этого достаточно определить новые нормальные координаты  соотношением:

     (27)

При таком выборе нормальных координат функция Лагранжа будет выглядеть так

     (28)

Проиллюстрируем введение нормальных координат для рассмотренной выше задачи с функцией Лагранжа:

.

Решение соответствующих уравнений Лагранжа имеет вид

;     ,

где собственные частоты определяются формулой

      и       

Из формул для  и  видно, что всегда можно записать

      и         (29)

Отсюда находим нормальные координаты

     и           (30)

Запишем функцию Лагранжа в новых обобщенных координатах. Кинетическая энергия

  (31)

Потенциальная энергия

.

или

 (32)

Видим, что кинетическая и потенциальная энергии системы одновременно привились к диагональному виду. Функция Лагранжа в новых обобщенных координатах теперь будет выглядеть так

   (33)

Система уравнений Лагранжа распадается на два независимых уравнения

;           (34)

;           (35)

Уравнение (34) описывает простые гармонические колебания с частотой , а уравнение (35) с частотой .

5


 

А также другие работы, которые могут Вас заинтересовать

17302. Технологія адаптивного управління інформаційною безпекою 632.5 KB
  Лекція 12. Технологія адаптивного управління інформаційною безпекою Рішення проблем безпеки корпоративних інформаційних систем вимагає застосування адаптивного механізму що працює в режимі реального часу і володіє високою чутливістю до змін в інформаційній інфраст...
17303. Засоби адаптивного управління інформаційною безпекою. Система виявлення уразливостей захисту 119.5 KB
  Лекція 13. Засоби адаптивного управління інформаційною безпекою. Система виявлення уразливостей захисту Основні рішення В умовах обмежених ресурсів використання засобів SAFEsuite є проблематичним ізза їх високої ціни. Основною задачею є пошук безкоштовних засобів адап...
17304. Технологія захисту інформації на базі захищених віртуальних приватних мереж 336 KB
  Лекція 15. Технологія захисту інформації на базі захищених віртуальних приватних мереж Концепція побудови захищених віртуальних приватних мереж VPN У основі концепції побудови захищених віртуальних приватних мереж VPN лежить достатньо проста ідея: якщо в глобальній ...
17305. Класифікація і рішення для побудови віртуальних приватних мереж VPN 216 KB
  Лекція 16. Класифікація і рішення для побудови віртуальних приватних мереж VPN Класифікація VPN Різні автори порізному проводять класифікацію VPN. Найчастіше використовуються три наступні ознаки класифікації: робочий рівень моделі OSI; конфігурація структурного ...
17306. Основи захисту периметру корпоративних мереж Засоби захисту периметру 530 KB
  Лекція 23. Основи захисту периметру корпоративних мереж Засоби захисту периметру Периметр це укріплена границя корпоративної мережі що може включати: маршрутизатори routers; брандмауери firewalls; проксісервери; proxyservers систему виявлення вторгнень IDS; ...
17307. Захист Windows Server. Механізми зміцнення безпеки Windows Server 123 KB
  Лекція 18. Захист Windows Server Механізми зміцнення безпеки Windows Server Операційна система Windows Server містить майстер настройки безпеки засіб заснований на використанні ролей що дозволяє забезпечити додаткову безпеку серверів. При використанні спільно з об'єктами групової п...
17308. Захист SQL Server 143 KB
  Лекція 19. Захист SQL Server Загальні положення Система управління базами даних Microsoft SQL Server має різноманітні засоби забезпечення захисту даних. Якщо база даних призначена для використання більш ніж однією людиною необхідно поклопотатися про розмежування прав доступу. В ...
17309. Захист web-серверів 139 KB
  Лекція 20. Захист webсерверів Правила забезпечення захисту Публічні вебсервери продовжують залишатися об'єктами атак хакерів які хочуть за допомогою цих атак нанести dтрату репутації організації або добитися якихнебудь політичних цілей. Хороші заходи захисту можуть...
17310. Захист поштових серверів Exchange Server 201 KB
  Лекція 21. Захист поштових серверів Exchange Server Основні рекомендації для забезпечення безпеки Хоча існує величезна кількість різних складних і сучасних засобів які можна використовувати для посилення безпеки структури сервера Exchange не варто недооцінювати наступні осн