19021

Операторы координаты и импульса: уравнения на собственные значения и собственные функции, разложения, координатное и импульсное представления волновой функции

Лекция

Физика

Лекция 3 Операторы координаты и импульса: уравнения на собственные значения и собственные функции разложения координатное и импульсное представления волновой функции Найдем оператор координаты в представлении то есть найдем как действует этот оператор на про

Русский

2013-07-11

444.5 KB

56 чел.

Лекция 3

Операторы координаты и импульса: уравнения на собственные значения и собственные функции, разложения, координатное и импульсное представления волновой функции

Найдем оператор координаты  в -представлении, то есть найдем, как действует этот оператор на произвольное состояние :

С одной стороны, согласно квантовомеханической формуле для средних

 (1)

где  - неизвестный пока оператор координаты. С другой стороны, поскольку  есть вероятность того, что частица имеет координату в интервале

 (2)

А поскольку  волновая функция  - произвольна, сравнение (1) и (2) дает  - это действие оператора . Найдем собственные функции этого оператора.

Пусть  - собственная функция оператора  в -представлении,  - собственное значение (фиксированное),  - аргумент функции - переменная. Функция  удовлетворяет уравнению

 (3)

Или, так как , то

  (4)

или

  (5)

Получили:

  (6)

Таким образом, функция  - удовлетворяет нашему соотношению, и для нее выполняется условие нормировки:  

Аналогично доказывается, что оператор любой физической величины, которая является функцией координаты, например, потенциальной энергии  есть умножение на эту функцию, то есть .

Здесь мы нигде не использовали, что  - координата  поэтому для любой физической величины  в -представлении имеем .

Исследуем теперь преобразование волновой функции при параллельном переносе системы координат и установим оператор импульса.

 

- однозначная функция точки пространства.

- волновая функция в другой системе отсчета.

- полностью описывает состояние системы. Тогда: , если .

Если имеется несколько частиц, и  описывает их состояние, тогда  

Подставим связь между координатами:  

Производим замену переменных:  

Любой параллельный перенос системы координат можно разбить на много бесконечно малых перенос. Рассмотрим бесконечно малый параллельный перенос:

  (7)

Введем  - оператор бесконечно малой трансляции, так, что . Из формулы (7) следует, что . Согласно основным физическим принципам оператор, связанный с трансляциями есть оператор импульса. Поэтому следует считать, что

 (8)

оператор импульса системы, а  - оператор импульса -той частицы. В другой форме записи: .

Рассмотрим свойства оператора импульса.

1)  - эрмитов оператор, что следует из цепочки формул:

(9)

Первое слагаемое равно нулю, в противном случае нормировочный интеграл для функций  и  не сходился бы. Поэтому . Поэтому эрмитов и оператор  (т.к. переменные  не отличаются друг от друга). Заметим, что если бы в определении  не было , то оператор был бы антиэрмитовым.

2) Операторы  - коммутируют друг с другом (очевидно)  они измеримы одновременно и имеют полную общую систему собственных функций.

  (10)

Найдем собственные функции и собственные значения оператора импульса. Пусть  - общая собственная функция операторов , а числа  - их собственные значения (соответственно). Тогда

  (11)

Очевидно, этим уравнениям удовлетворяет функция  , где  могут быть любыми действительными (в силу эрмитовости оператора ) числами. Если бы они были комплексными,  была бы неограничена при  (а мы ищем только ограниченные волновые функции). Таким образом, спектр оператора  непрерывен: .

Функции  ненормируемые (так как спектр непрерывен), их можно нормировать на -функцию. Выберем собственные функции так: (нормировочный коэффициент равен 1). Тогда:

  (12)

Собственные функции оператора импульса, как и любого эрмитова оператора, образуют полную систему функций или базис в пространстве «хороших» функций координат. Волновую функцию любого состояния  можно разложить по этому базису, причем это разложение в интеграл, поскольку собственные функции оператора импульса образуют непрерывный базис. Это разложение имеет вид

 (13)

где  - «коэффициенты» разложения, представляющие собой функцию непрерывной переменной . Нетрудно видеть, что разложение (13) – это разложение в интеграл Фурье по гармоникам . «Коэффициенты» разложения – функция  - может быть найдена следующим образом

  (14)

Согласно постулатам квантовой механики квадрат функции  представляет собой плотность вероятности обнаружения различных значений импульса

 (15)

Сравнивая формулу (15) с определением волновой функции в координатном представлении заключаем, что функция  также имеет смысл волновой функции, но определяющей вероятности различных значений импульса. Она называется волновой функцией в импульсном представлении. С математической точки зрения формула (14) - это обращение преобразования Фурье (а функция  – Фурье-образ функции )).

Мы знаем, что в координатном представлении операторы имеют следующий вид:. В импульсном представлении: . Найдем теперь оператор координаты в импульсном представлении.

Основная идея этого нахождения заключается в сравнении «прямого» (13) и «обратного» (14) разложения волновой функции. Поскольку обе этих формулы должны представлять собой разложение волновой функции в координатном представлении по собственным функциям оператора импульса, и волновой функции в импульсном представлении по собственным функциям оператора координаты, заключаем, что функция  как функция  есть собственная функция оператора координаты в импульсном представлении, поэтому:

  (16)

причем оператор  здесь действует на импульс. Отсюда получаем

 

Операторы координаты и импульса не коммутируют. Это видно из следующей цепочки формул

 

 

Поэтому , и, следовательно, операторы не коммутируют. По этой причине операторы координаты и импульса не имеют общих собственных функций (это, впрочем, видно и из явных выражений для собственных функций этих операторов).

Подведем итоги. Любое состояние частицы однозначно характеризуется как волновой функцией , так и «коэффициентами» разложения  функции  по собственным функциям оператора импульса , причем согласно постулатам квантовой механики функция  определяет вероятности различных значений импульса и называется волновой функцией в импульсном представлении. Свойства функций  и  похожи. Благодаря линейной связи, для функций  справедлив принцип суперпозиции: если возможны состояния, которые описываются (в указанном выше смысле вероятностей импульсов) функциями  или , то возможно и состояние, в котором вероятности различных значений импульса определяются линейной комбинацией . Можно определить операторы физических величин, действующие в пространстве функций, зависящих от импульса (операторы в импульсном представлении), причем операторы одной и той же величины в разных представлениях имеют одни и те же собственные значения, а собственные функции любых операторов в разных представлениях связаны, как и любые другие функции.

Проведенное рассмотрение показывает, что для анализа любой квантовомеханической задачи можно использовать не только координатное, но и импульсное представление, причем последнее обладает теми же свойствами, что и первое. При этом и многие формулы координатного и импульсного представления (например, операторы координаты в импульсном представлении и импульса в координатном) очень «симметричны». Последнее аналогично известному из классической механики подобию координаты и импульса, причем, как и в случае классических уравнений Гамильтона, отличие импульсов от координат сводится к разным знакам.

В заключение отметим, что можно построить и волновые функции состояний физических систем и операторы физических величин в представлении любой физической величины. Аргументами таких функций являются все возможные значения рассматриваемой величины (то есть все собственные значения ее оператора), а значения волновых функций при каждом значении аргумента определяют вероятность этого значения аргумента. При этом волновые функции в представлении величин, обладающих дискретным спектром собственных  значений, должны быть отличны от нуля только при таких значениях аргумента, которые совпадают с одним из собственных значений оператора этой величины (так как вероятности обнаружить другие значения этой величины равны нулю). Поэтому такие функции зависят от дискретной переменной и, фактически, представляют собой счетное множество чисел (конечное или бесконечное в зависимости от числа собственных функций оператора), представляющих собой коэффициенты разложения волновой функции по собственным функциям оператора этой физической величины.

5


 

А также другие работы, которые могут Вас заинтересовать

81496. Обмен безазотистого остатка аминокислот. Гликогенные и кетогенные аминокислоты. Синтез глюкозы из аминокислот. Синтез аминокислот из глюкозы 162.72 KB
  В ходе катаболизма аминокислот происходит отщепление аминогруппы и выделение аммиака. Другим продуктом дезаминирования аминокислот служит их безазотистый остаток в виде α-кетокислот. Катаболизм аминокислот происходит практически постоянно. За сутки в норме в организме человека распадается примерно 100 г аминокислот, и такое же количество должно поступать в составе белков пищи.
81497. Трансметилирование. Метионин и S-аденозилметионин. Синтез креатина, адреналина и фосфатидилхолинов 166.74 KB
  Метальная группа метионина мобильный одноуглеродный фрагмент используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий акцептор называют реакцией трансметилирования имеющей важное метаболическое значение. Метальная группа в молекуле метионина прочно связана с атомом серы поэтому непосредственным донором этого одноутлеродного фрагмента служит активная форма аминокислоты. Реакция активация метионина Активной формой метионина является Sаденозилметионин SM сульфониевая форма аминокислоты...
81498. Метилирование ДНК. Представление о метилировании чужеродных и лекарственных соединений 108.02 KB
  Метилирование ДНК это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК что можно рассматривать как часть эпигенетическойсоставляющей генома. Метилирование ДНК заключается в присоединении метильной группы к цитозину в позиции С5 цитозинового кольца. У человека за процесс метилирования ДНК отвечают три фермента называемые ДНКметилтрансферазами 1 3 и 3b DNMT1 DNMT3 DNMT3b соответственно.
81499. Источники и образование одноуглеродных групп. Тетрагидрофолиевая кислота и цианкобаламин и их роль в процессах трансметилирования 168.87 KB
  Образование и использование одноуглеродных фрагментов. Ещё один источник формального и формиминофрагментов гистидин. Все образующиеся производные Н4фолата играют роль промежуточных переносчиков и служат донорами одноуглеродных фрагментов при синтезе некоторых соединений: пуриновых оснований и тимидиловой кислоты необходимых для синтеза ДНК и РНК регенерации метионина синтезе различных формиминопроизводных формиминоглицина и т. Перенос одноуглеродных фрагментов к акцептору необходим не только для синтеза ряда соединений но и для...
81500. Антивитамины фолиевой кислоты. Механизм действия сульфаниламидных препаратов 104.02 KB
  В медицинской практике в частности в онкологии нашли применение некоторые синтетические аналоги антагонисты фолиевой кислоты. Аминоптерин является наиболее активным цитостатикомантагонистом фолиевой кислоты; отличается высокой токсичностью вследствие чего показан лишь при тяжёлых формах псориаза. ПАБК необходима микроорганизмам для синтеза фолиевой кислоты которая превращается в фолиниевую кислоту участвующую в синтезе нуклеиновых кислот.
81501. Обмен фенилаланина и тирозина. Фенилкетонурия; биохимический дефект, проявление болезни, методы предупреждения, диагностика и лечение 261.77 KB
  Тирозин условно заменимая аминокислота поскольку образуется из фенилаланина. Метаболизм феиилаланина Основное количество фенилаланина расходуется по 2 путям: включается в белки; превращается в тирозин. Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина так как высокие концентрации его токсичны для клеток.
81502. Алкаптонурия и альбинизм: биохимические дефекты, при которых они развиваются. Нарушение синтеза дофамина, паркинсонизм 403.53 KB
  Нарушение синтеза дофамина паркинсонизм. Заболевание развивается при недостаточности дофамина в чёрной субстанции мозга. Для лечения паркинсонизма предлагаются следующие принципы: заместительная терапия препаратамипредшественниками дофамина производными ДОФА леводопа мадопар наком и др. подавление инактивации дофамина ингибиторами МАО депренил ниаламид пиразидол и др.
81503. Декарбоксилирование аминокислот. Структура биогенных аминов (гистамин, серотонин, γ-аминомасляная кислота, катехоламины). Функции биогенных аминов 239.46 KB
  Процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования. В живых организмах открыты 4 типа декарбоксилирования аминокислот. αДекарбоксилирование характерное для тканей животных при котором от аминокислот отщепляется карбоксильная группа стоящая по соседству с αуглеродным атомом.
81504. Дезаминирование и гидроксилирование биогеных аминов (как реакции обезвреживания этих соединений) 168.64 KB
  Инактивация биогенных аминов происходит двумя путями: 1 метилированием с участием SM под действием метилтрансфераз. Таким образом могут инактивироваться различные биогенные амины но чаще всего происходит инактивация гастамина и адреналина. Так инактивация адреналина происходит путём метилирования гидроксильной группы в ортоположении . Реакция инактивации гистамина также преимущественно происходит путём метилирования 2 окислением ферментами моноаминооксидазами МАО с коферментом FD таким путем.