19022

Матрицы операторов. Унитарные преобразования базиса. Соотношения коммутации. Одновременная измеримость физических величин

Лекция

Физика

Лекция 4 Матрицы операторов. Унитарные преобразования базиса. Соотношения коммутации. Одновременная измеримость физических величин. Соотношение неопределенностей Гейзенберга Рассмотрим некоторый линейный оператор :. Выберем в рассматриваемом линейном пространст...

Русский

2013-07-11

650 KB

7 чел.

Лекция 4

Матрицы операторов. Унитарные преобразования базиса. Соотношения коммутации. Одновременная измеримость физических величин. Соотношение неопределенностей Гейзенберга

Рассмотрим некоторый линейный оператор :. Выберем в рассматриваемом линейном пространстве дискретный ортонормированный базис. Так как каждому элементу этого пространства соответствует набор его координат в выбранном базисе, то оператору  соответствует закон, связывающий координаты элементов линейного пространства. Можно доказать, что для любого линейного оператора закон, позволяющий найти координаты элемента  по координатам элемента , можно представить в виде произведения некоторой матрицы из чисел на столбец, составленный из координат , , , … элемента

      (1)

где под умножением матрицы на столбец понимается принятое в линейной алгебре правило матричного умножения («строка на столбец»):

        (2)

Числа , которые являются характеристикой оператора, но не зависят от элемента , составляют матрицу оператора . Очевидно, размерность матрицы оператора совпадает с размерностью пространства, в котором оператор действует. В частности, операторам, действующим в бесконечномерных пространствах отвечают бесконечные матрицы.

Можно доказать, что сумме и произведению операторов отвечает сумма и произведение их матриц:

  (3)

Матричные элементы матрицы оператора можно связать с результатом его действия на базисные элементы. Действительно, пусть  - ортонормированный базис. Разложим элементы  и  в определении оператора по базису :

      (4)

где  - координаты элементов  и . Умножим скалярно равенство (4) на  и, пользуясь ортонормированностью базиса, линейностью оператора и скалярного произведения, получим

      (5)

Сравнивая (4) с определением матрицы оператора, заключаем, что

       (6)

Из формулы (6) можно получить ряд следствий.

1. Если в качестве базиса выбрать собственные функции оператора, его матрица является диагональной

    (7)

причем на диагонали размещаются собственные значения оператора .

2. Матрицы сопряженных операторов транспонированы и комплексно сопряжены друг по отношению к другу:

     (8)

3. При комплексном сопряжении и транспонировании матрицы эрмитова оператора получается та же матрица

если    то         (9)

4. При изменении базиса матрица изменяется. Остановимся на этом пункте более подробно. Пусть выбрано два ортонормированных базиса  и . Каждый базисный элемент  можно разложить по базису :

       (10)

где  - некоторые числа, которые образуют квадратную матрицу (удобнее выполнять суммирование по первому индексу матрицы  - так, как это сделано в (10)). Матрицу  принято называть матрицей перехода от одного базиса к другому. Очевидно, матрица перехода от одного ортонормированного базиса к другому является унитарной. Действительно, из ортонормированности обоих базисов имеем

(11)

Но так как , из (11) имеем

      (12)

где  - единичная матрица, что и означает, что матрица перехода унитарна (равенство (12) есть определение унитарного оператора).

Чтобы установить связь между матрицами одного и того же оператора при разных выборах базиса воспользуемся формулой (7) и формулой связи базисов

 (13)

где  и  - матрицы оператора  в базисе  и  соответственно. С помощью правил матричного умножения формулу (13) можно записать в виде

     (14)

Из формулы (14), в частности, следует, что шпур матрицы оператора (сумма диагональных элементов) не зависит от выбора базиса или, как говорят, является инвариантным относительно выбора базиса (это связано с тем, что если под знак шпура входит произведение матриц, матрицы в нем можно циклически переставлять). Поэтому при любом выборе базиса шпур матрицы эрмитового оператора равен сумме его собственных значений. Также инвариантным является детерминант матрицы оператора.

Исследуем теперь вопрос о существовании общих собственных функций у разных операторов. Справедлива следующая

теорема:

Для того чтобы два оператора  и  имели полную систему общих собственных функций необходимо и достаточно, чтобы они коммутировали: .

Необходимость: Пусть  - полная система общих собственных функций. Тогда любую функцию  можно разложить по : . Подействуем на это равенство коммутатором

 (15)

где   собственные значения. Так как  произвольна, то .

Достаточность: . Подействуем на уравнение на собственные функции оператора

 (16)

где ,  - собственное значение и собственная функция оператора , оператором

 (17)

Благодаря коммутации операторов и линейности оператора , имеем из (17)

 (18)

Таким образом, функция  также является собственной для оператора . Если у оператора  невырожденный спектр, то собственному значению  отвечает единственная собственная функция. Поэтому функция  может отличаться от  некоторым множителем:

   (19)

где буквой  обозначен указанный множитель. Уравнение (19) и означает, что функция  является собственной и для оператора .

Если спектр оператора  вырожден, то есть одному собственному значению отвечают несколько собственных функций, то функция , вообще говоря, не сводится к функции . В этом случае, однако, выбор собственных функций является неоднозначным и можно построить такие линейные комбинации собственных функций оператора , которые будут также и собственными для оператора . Теорема доказана.

Так как операторы координаты и импульса не коммутируют, они не имеют полной системы общих собственных функций. На самом деле у этих двух операторов нет ни одной общей собственной функции. Поэтому нет состояний, в которых и координата и импульс одновременно имели бы определенные значения (именно поэтому в квантовой механике нет понятия траектории). Всегда существует либо разброс координат, либо разброс импульсов, либо и то и другое. Рассмотрим утверждение, связывающее эти величины и которое является одним из основополагающим законов квантовой механики.

Соотношение неопределенностей Гейзенберга.

Исходя из коммутатора оператора координаты и импульса

 (20)

докажем, что

 

т.е. неопределенности координаты и импульса не могут быть одновременно уменьшены до сколь угодно малых величин.

Для доказательства рассмотрим произвольное состояние . Пусть в этом состоянии:  и  (этого всегда можно добиться выбором системы координат). Тогда:

 

  (21)

Рассмотрим некоторый функционал от действительной переменной :

  (22)

Очевидно, что , как интеграл от четной неотрицательной функции. Учитывая, что x-действительная величина и что действие оператора координаты в собственном представлении сводится просто к умножению на значение координаты x, получим:

 

 

 

  (23)

Полученное выражение как функция переменной , представляет собой параболу с ветвями, направленными вверх. Чтобы выполнялось неравенство (23) при любых  необходимо, чтобы . Получим:

  (24)

Или

 

Поскольку  и , то:

 

Мы получили точную формулировку соотношения неопределенностей Гейзенберга.

Замечание: 

1. Если бы операторы  и  коммутировали, то мы не смогли бы получить этого соотношения.

2. Состояние, которое «минимизирует» соотношение неопределенностей:

 

Это состояние представляет собой гауссовский волновой пакет. В нем:

 

5


 

А также другие работы, которые могут Вас заинтересовать

29840. АНАЛИЗ ЛИНЕЙНЫХ СИСТЕМ УПРАВЛЕНИЯ 122.5 KB
  АНАЛИЗ ЛИНЕЙНЫХ СИСТЕМ УПРАВЛЕНИЯ. Предмет и задачи курса теории управления. Принципы управления. Классификация систем управления.
29841. Дискретные системы управления. Математическое описание дискретных сигналов 325.5 KB
  Свойства спектра дискретного сигнала и погрешности восстановления непрерывного сигнала. Аналитическое представление такого сигнала Аналитическое представление АИМ сигнала – формула При представлении дискретного сигнала в виде числовой последовательности отсутствует время t поэтому к числовым последовательностям не применимы интегральные преобразования.
29842. МАТЕМАТИЧЕСКИЕ МОДЕЛИ ОБЪЕКТОВ И СИСТЕМ УПРАВЛЕНИЯ 252 KB
  МАТЕМАТИЧЕСКИЕ МОДЕЛИ ОБЪЕКТОВ И СИСТЕМ УПРАВЛЕНИЯ. МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ЛИНЕЙНЫХ СИСТЕМ УПРАВЛЕНИЯ. МАТЕМАТИЧЕСКИЕ МОДЕЛИ ОБЪЕКТОВ И СИСТЕМ УПРАВЛЕНИЯ. Моделирование объектов и систем управления начинается с их выделения из окружающей среды что всегда приводит к изучению принципов т.
29843. Физический смысл коэффициентов дифференциального уравнения 295 KB
  Вывод: Звено 2ого порядка характеризуется либо двумя постоянными времени T1 и T2 либо постоянной времени и степенью затухания. Типовое звено – это звено процессы в котором описываются дифференциальным уравнением не выше 2ого порядка. Рассмотрим классификацию типовых динамических звеньев: статические звенья: Пзвено – идеальное усилительное звено пропорциональное . Азвено 1ого порядка – инерционное апериодическое звено 1ого порядка .
29844. Экономические модели финансового роста 21.51 KB
  Экономические модели финансового роста. внимание общества привлекли разрабатывавшиеся в рамках неоклассических теорий модели экономического роста авторы которых широко используя математический аппарат пытались решить проблемы потенциального и устойчивого роста экономики определить условия достижения динамического равновесия. Данный подход характерен и для нашей страны: российские экономисты успешно разрабатывают модели межотраслевого баланса на базе которых рассчитывают межотраслевые пропорции валовой и конечный продукт личное и...
29845. Формирование политики бюджетного регулирования,принципы организации и направления её совершенствования 22.9 KB
  Для проведения рациональной бюджетной политики важно правильное понимание бюджетной системы. Бюджетная система Российской Федерации представляет собой целостную совокупность бюджетов всех уровней основанную на принципах построения бюджетной системы федеративного государства. Бюджетная система РФ является составной частью финансовой системы РФ и включает: 21 республиканский бюджет республик в составе РФ; 55 краевых и областных бюджетов; бюджеты 2 городов Москвы и СанктПетербурга; 1 бюджет автономной области; 10 бюджетов автономных округов;...
29846. Инвестиционный проект:содержание,классификация,фазы развития.Критерии и методы оценки 94 KB
  Временной фактор играет ключевую роль в оценке инвестиционного проекта. На этом этапе проект разрабатывается готовится его техникоэкономическое обоснование проводятся маркетинговые исследования осуществляется выбор поставщиков сырья и оборудования ведутся переговоры с потенциальными инвесторами и участниками проекта. Также здесь может осуществляться юридическое оформление проекта регистрация предприятия оформление контрактов и т. Как правило в конце предынвестиционной фазы должен быть получен развернутый бизнесплан инвестиционного...
29847. Резервы повышения развития средств хозяйствования 18.46 KB
  В масштабах всего народного хозяйства создаются общегосударственные резервы средств производства и ведется подготовка трудовых резервов т. Это направление анализа резервов имеет очень важное значение для расчета обоснованных норм резервных запасов их ограничения действительно необходимыми для обеспечения непрерывности и ритмичности производства. Выявление резервов в таком понимании и определение реальных путей и сроков их мобилизации являются основными задачами экономического анализа деятельности хозяйствующих субъектов. Для...
29848. Федеральные фонды:порядок формирования и использование средств 18.82 KB
  Законодательные представительные органы не имеют права создавать свои резервные фонды а также выполнять отдельные функции по исполнению бюджетов за исключением органов местного самоуправления совмещающих функции законодательных и исполнительных органов. ФЕДЕРАЛЬНЫЕ ФОНДЫ 1. Фонды военноучебных заведений РГВИА РГВА 8.