19028

Гармонический осциллятор. Уровни энергии и волновые функции (решение с помощью операторов рождения и уничтожения)

Лекция

Физика

Лекция 10 Гармонический осциллятор. Уровни энергии и волновые функции решение с помощью операторов рождения и уничтожения Сегодня мы рассмотрим другой способ решения задачи о гармоническом осцилляторе. Вопервых этот способ и сам по себе поучительный а вовторых ...

Русский

2013-07-11

1.04 MB

22 чел.

Лекция 10

Гармонический осциллятор. Уровни энергии и волновые функции (решение с помощью операторов рождения и уничтожения)

Сегодня мы рассмотрим другой способ решения задачи о гармоническом осцилляторе. Во-первых, этот способ и сам по себе поучительный, а во-вторых, операторы, которые в нем вводятся, используются и в других разделах квантовой механики. И, конечно, давайте забудем сейчас все, что мы получили на предыдущей лекции, за исключением гамильтониана гармонического осциллятора:

  (1)

Уравнение на собственные значения имеет обычный вид:

  (2)

но явно мы его решать не будем, а исследуем спектр и собственные функции оператора , исходя из свойства так называемой суперсимметрии этого гамильтониана, или, другими словами, матричным способом.

Разделим уравнение на  и введем следующие безразмерные величины:

  (3)

в координатном представлении:

  (4)

С использованием введённых обозначений, уравнение Шредингера можно преобразовать к виду:

 (5)

 (6)

Операторы  и  - эрмитовы. Введём неэрмитовые операторы:

 (7)

 (8)

так как данные обозначения являются стандартными, «крышечки» над ними мы ставить не будем.

Рассмотрим коммутационные соотношения:

 (9)

Поэтому из определений операторов и предыдущего равенства следует:

 (10)

Равенства (7), (8) можно обратить и выразить операторы  выразить через  и :

 (11)

 (12)

Подставляя эти выражения в безразмерный гамильтониан одномерного гармонического осциллятора, получим:

 (13)

Возьмём произвольное состояние  и найдем среднее значение гамильтониана в этом состоянии:

  (14)

Т.к. интеграл заведомо неотрицателен (подынтегральная функция везде неотрицательна), получаем:

  (15)

Если мы возьмём состояние , такое что:

  (16)

то это состояние - собственное состояние гамильтониана , как это следует из формулы (13), причем это состояние отвечает собственному значению ½ (в безразмерных единицах). Функцию  можно найти, решив уравнение (16) (оно является дифференциальным уравнением первого порядка по ). В состоянии  величина  принимает наименьшее значение. Из (13), (16) получим

  (17)

т.к. в собственном состоянии среднее значение совпадает с собственным значением, то энергия основного состояния осциллятора (в безразмерных единицах) есть:

  (18)

возвращаясь к размерным величинам согласно формулам (3), получим энергию основного состояния:

  (19)

Далее. Пусть  - собственное состояние гамильтониана осциллятора, отвечающее собственному значению . Докажем, что функция , которая получается при действии оператора  на функцию  

  (20)

также является собственной функцией оператора , отвечающей собственному значению на единицу меньшему, чем  (в безразмерных единицах). Для доказательства подействуем на уравнение

 (21)

оператором . Используя коммутационное соотношение (10) и выражение оператора Гамильтона через  и  (13), получим

 

 (22)

Формула (22) и означает, что . По этой причине оператор  называется оператором, понижающим собственное состояние. Аналогично доказывается, что

 (23)

то есть оператор  является повышающим оператором.

Таким образом, мы уже знаем весь спектр. Если с какого-то собственного значения  начать понижать собственные значения, то процедура должна оборваться на конечном числе шагов, т.е. через целое число шагов мы придем к собственному состоянию  и собственному значению:

 (24)

или 

 (25)

Возвращаясь к размерным величинам, из (25) получаем окончательное выражение для спектра осциллятора:

  (26)

Найдем теперь волновые функции стационарных состояний осциллятора. Из свойств оператора :

 (27)

Тогда

 (28)

 (29)

 

  (30)

Таким образом, все состояния строятся из основного с помощью этой операции. Найдём волновую функцию основного состояния  

  (31)

Используя явное выражение для понижающего оператора

  (32)

получаем из уравнения (31):

  (33)

Интегрируя это уравнение, получим:

  (34)

(предэкспоненциальный множитель появляется из условия нормировки). Все остальные волновые функции будут нормированными автоматически. Используя явный вид оператора  находим рекуррентные соотношения для волновых функций:

  (35)

где, как это легко видеть из (34),  - некоторый многочлен степени , который называется полином Эрмита. 

Так как в  безразмерные операторы импульса и координаты входят симметрично, то в импульсном представлении волновая функция имеет подобное (35) выражение:

  (36)

Если вернуться к размерным координатам согласно формулам (3), то:

  (37)

4


 

А также другие работы, которые могут Вас заинтересовать

77355. ONE APPROACH TO COMPUTING ON DEMAND 26.5 KB
  Consider sitution when we wnt to provide remote ccess to such progrm using the grphicl interfce. It is not esy for mthemticin to upgrde his progrm to the scenrio described bove. This project contins description how to run the progrm list of input dt wy to trnsfer it to the progrm nd the wy to collect the results.
77356. Описание параллельных вычислений при помощи замыканий 35 KB
  Переменная n из множества NMES принимает значение истина только в том случае когда вычислен блок данных с именем являющимся и именем n. Для вычисления в функцию F передаются 1 список аргументов RGS 2 битовый вектор со значениями переменных NMES и 3 вычисленные блоки данных имена которых совпадают с именами переменных из...
77357. ПСИХОЛОГИЧЕСКИЕ АСПЕКТЫ ФЕНОМЕНА ПРИСУТСТВИЯ В ВИРТУАЛЬНОЙ СРЕДЕ 103 KB
  Цель данной работы определить круг основных понятий связанных с человеческим фактором в контексте виртуальной реальности. В литературе приводятся такие понятия как виртуальная реальность среда виртуальной реальности виртуальная среда иммерсивная виртуальная среда присутствие англ.
77358. О реальности автоматизации отладки счетных программ 26.5 KB
  Современные отладчики позволяя осуществлять мониторинг по ходу исполнения программы помогают в локализации ошибок. Для таких систем нужна эталонная программа или эталонный запуск сохраняющий информацию о ходе выполнения программы. В частности о неправильности может сигнализировать сбой программы типа деления на ноль некорректного обращения к памяти или срабатывания ssertусловия. В случае плавающей ошибки анализируя выдачи программы при разных запусках можно попытаться обнаружить отличающиеся значения.
77359. Средства визуальной поддержки процесса распараллеливания последовательных программ 187 KB
  Одной из важных задач поддержки и организации супервычислений является задача распараллеливания огромных объемов прокладных программ, созданных в предшествующую эпоху для последовательных ЭВМ. Эти программы успешно решали задачи математической физики, моделирования химических процессов, небесной механики и др. После появления современных параллельных вычислителей с 1000 и 10 000 процессоров встает проблема превращения надежных и проверенных кодов в эффективные и мобильные параллельные программы.
77360. Параллельный рендеринг воксельной графики 27.5 KB
  В данной статье описывается разработка средств распараллеливание воксельной графики используемой для представления больших объемов данных получаемых в результате компьютерного моделирования сложных процессов. Обычно данных представляются в виде 3х мерного массива. Затем вычисляется ближайшая точка пересечения этого луча с областью данных параллелограммом. После этого алгоритм движется по трёхмерному массиву данных с шагом в одну ячейку до попадания в не пустую точку.
77361. Вопросы выбора архитектуры интерактивного взаимодействия с параллельными программами 120 KB
  озможность интерактивного взаимодействия с суперкомпьютерной программой при проведении расчётов по сравнению с пакетной обработкой задач может существенно повысить эффективность труда исследователя. Однако организация такого взаимодействия сопряжена с рядом трудностей связанных с устоявшейся методикой программирования и проведения расчётов. Один из ключевых моментов построения такого взаимодействия выбор правил и принципов построения связи со счетными программами.
77362. DATAFLOW-BASED DISTRIBUTED COMPUTING SYSTEM 39.5 KB
  The method is bsed on the following concepts: storge tsk nd rule. Storge stores nmed dt on which three opertions could be pplied crete write red nd delete. Every item in the storge is selfsufficient nd contins dt some metinformtion nd hs unique nme. The term tsk identifies the progrm which could red dt with specific nmes from the storge nd generte new dt items which will be written into the storge s result of tsk execution.
77363. ПОИСК НОВЫХ ПОДХОДОВ К ВИЗУАЛИЗАЦИИ ПРОЦЕССОВ 33 KB
  Важная проблема разработки систем компьютерной визуализации связана с выбором методов представления данных возникающих в связи с описанием сложных процессов. Такие подходы появляются в различных областях компьютерной визуализации см. Нужен дополнительный поиск более простых метафор визуализации позволяющих более эффективно анализировать абстрактные данные.