19032

Момент импульса: матричная теория

Лекция

Физика

Лекция 14 Момент импульса: матричная теория Получим собственные значения операторов проекции и квадрата момента другим способом. Этот способ основан только на коммутационных соотношениях между операторами момента и не использует явные выражения для самих оператор

Русский

2013-07-11

280 KB

13 чел.

Лекция 14

Момент импульса: матричная теория

Получим собственные значения операторов проекции и квадрата момента другим способом. Этот способ основан только на коммутационных соотношениях между операторами момента и не использует явные выражения для самих операторов. По этой причине этот способ носит общий характер и может быть использован, в частности, для спинового момента, когда коммутационные соотношения имеют место, а явные выражения для операторов - нет.

Введём следующие операторы:

  (1)

С помощью коммутационных соотношений для операторов проекций момента установим коммутационные соотношения для операторов . Имеем:

     (2)

  (3)

   (4)

Здесь использованы коммутационные соотношения для операторов проекций момента импульса и его квадрата. Отметим, что поскольку операторы  неэрмитовы, они не отвечают никаким наблюдаемым величинам.

Явные выражения для операторов  можно получить из определения оператора момента  и формулы (1). В декартовых координатах выражения для проекций момента  и  приведены в предыдущей лекции. Непосредственно переходя от дифференцирования по декартовым координатам к дифференцированию по сферическим, получим следующие выражения для операторов :

  (5)

Пусть, далее,  - общая собственная функция операторов  и , отвечающая собственным значениям  и  (сейчас предполагается, что собственные значения операторов квадрата и проекции нам сейчас неизвестны; существование полной системы общих собственных функций операторов  и  следует из факта их коммутации). Докажем, что функции  удовлетворяют уравнениям:

     (6)

то есть являются общими собственными функциями операторов  и , отвечающими собственным значениям  и  (либо тождественно равны нулю; в последнем случае уравнения (6) также удовлетворяются).

Для доказательства подействуем операторами  на уравнения на собственные значения  операторов  и :

     (7)

     (8)

Пользуясь тем, что операторы  коммутируют с оператором , поменяем порядок следования операторов в левой части уравнения (1). В результате получим

    (9)

В уравнении (8) поменять порядок следования операторов  и  нельзя, поскольку эти операторы не коммутируют. Выразим входящее в него произведение операторов из коммутационного соотношения (3) и подставим в уравнение (8):

    (10)

Раскрывая в (10) скобки и перенося одно из слагаемых в правую часть, получим второе уравнение

    (11)

Из уравнений (10), (11) следует, что функции  являются собственными функциями операторов  и , отвечающими собственным значениям  и  соответственно, или тождественно обращаются в нуль  (в этом случае уравнения (10), (11) также удовлетворяются, а функция, тождественно равная нулю, собственной по определению не является).

По этой причине операторы  и  называются операторами, повышающим и понижающим проекцию момента импульса частицы на ось .

Далее. Пусть  максимальное собственное значение проекции момента на ось  при фиксированной величине момента (ясно, что таковое существует). Тогда

  (12)

Подействуем на это равенство оператором :

  (13)

С другой стороны из определения имеем

 (14)

Поэтому равенство (13) сводится к

 (15)

Так волновая функция  есть собственная функция всех операторов, входящих в это равенство, а также с учётом того, что это состояние с максимальной проекцией момента на ось , равной , получим:

  (16)

Отсюда

  (17)

где  - максимальное значение проекции момента. Действуя далее на функцию  оператором , будем получать новые собственные функции

 (18)

пока не дойдем до функции с минимальной проекцией. Обозначим эту проекцию . С одной стороны, для числа   справедливо равенство

(19)

где  - целое число. С другой, для функции  выполнено условие

  (20)

Действуя на это равенство оператором , получаем:

  (21)

Так как функция  является собственной функцией операторов  и , то из формулы (21) получаем

 (22)

или

 (23)

Подставляя в формулу (23)  из (19) и приравнивая полученное выражение выражению (17), получим для максимально возможного значения проекции момента в состоянии с определенным квадратом момента

 (24)

где  - целое число. Таким образом из формул (24), (17) и (19) следует, что собственные значение операторов квадрата момента и его проекции на ось  определяются соотношениями

(25)

 (26)

где  - целое или полуцелое число. Никаких других собственных значений эти операторы иметь не могут.

Для построения собственных функций операторов квадрата и проекции момента используем явное выражение оператора  (5). Учитывая, что зависимость от азимутального угла  волновой функции состояния с максимальной проекцией  определяется соотношением , где  - некоторая функция полярного угла , из формул (5), (12) получаем для функции

  (27)

откуда

  (28)

Выражение для сферической функции  получаем, действуя на (28), понижающим оператором:

 (29)

Аналогично получается и общее выражение для сферической функции

  (30)

Рассмотрим теперь свойства четности сферических функций. Поскольку в оператор момента сами декартовы координаты и производные по ним входят в виде билинейных комбинаций, операторы инверсии и момента коммутируют:

  (31)

Используя теорему о связи коммутации операторов и одновременной измеримости физических величин, можно сделать вывод, что состояние с определённым моментом и проекцией обладает также определённой чётностью. А поскольку при преобразованиях инверсии сферические координаты преобразуются как

  (32)

то

  (33)

Найдем четность всех сферических функций. Во-первых, очевидно, что четность сферической функции определяется только моментом и не зависит от проекции момента на ось. Действительно, состояния с различными проекциями связаны друг с другом действием операторов , которые коммутируют с оператором четности. Поэтому достаточно найти четность функции . А это легко сделать, используя явное выражение для сферической функций с максимальной проекцией:

 (34)

Из (34) имеем

 (35)

Поэтому для любых сферических функций

  (34)

4


 

А также другие работы, которые могут Вас заинтересовать

31438. Основные черты западноевропейской философии XVII века. Философия Ф. Бэкона, Т. Гоббса, Д. Локка. Философия Р. Декарта 50 KB
  В философии на первый план выдвигаются проблемы теории познания гносеологии в частности: что значит знать что пролагает дорогу к истине ощущения или разум интуиция или логика аналитическим или синтетическим должно быть познание и т. Одна группа работ посвящена проблемам развития науки и анализа научного познания. Основной задачей философии Бэкон считал конструирование нового метода познания а целью науки принесение пользы человечеству. Фундаментом всякого познания по оценке Бэкона является опыт который должен быть...
31439. Основные черты западноевропейской философии XVIII века. Философские взгляды просветителя Ж.-Ж. Руссо. Утопический социализм Сен-Симона и Оуэна. Философия французского материализма XVIII века (Дидро, Гельвеции, Гольбах) 39 KB
  Руссо. Второй этап с середины 40х годов до конца 80х годов до Французской революции: Руссо Кондильяк и четыре великих французских материалиста Ламетри Дидро Гельвеций и Гольбах. К материалистам относятся вышеупомянутые четыре французских материалиста деистическую религию исповедовал Вольтер; новую разновидность подхода к христианству религию чувства развивал Руссо. Большинство просветителей склонялись к идеям реформизма меньшинство например Мелье Руссо были революционерами.
31440. Немецкая классическая философия: Кант, Фейербах 31 KB
  Для Канта этот вопрос сводится к вопросу о возможности чистой математики и чистого естествознания см. Кант Родоначальником немецкой классической философии стал Иммануил Кант 17241804 В философии Канта выделяется два периода:1 докритический и 2 критический. На первом этапе Кант выступает материалистом.
31441. Немецкая классическая философия: Гегель 24 KB
  Самораскрытие Абсолютного Духа в пространстве это природа; самораскрытие во времени история. Историю движут противоречия между национальными духами которые суть мысли и проекции Абсолютного Духа. Когда у Абсолютного Духа исчезнут сомнения он придёт к Абсолютной Идее Себя а история закончится и настанет Царство Свободы. Войны между народами выражают напряжённое столкновение мыслей Абсолютного Духа.
31442. Мир, природа, бытие, субстанция, материя 25.5 KB
  Философском энциклопедическом словаре имеется следующее определение: âБытие философская категория обозначающая реальность существующую объективно вне и независимо от сознания человекаâ. Самый первый философ кот изучал бытие Парменид: бытие есть не бытие нет мыслимое существует не мыслимое не существует. У Платона бытиеэто мир идей.
31443. Материя и проблема субстанции в философии. Монизм, дуализм, плюрализм. Философия и наука о материальном единстве мира как единстве многообразия сущего 36.5 KB
  Материя как субстанция обладает свойствами: несотворимость неуничтожимость бесконечность способность к саморазвитию. Материя как субстанция не существует отдельно от материальных явлений как нечто самостоятельное она существует только в них и через них. Материя объективное бытие.
31444. Материя и движение. Движение – способ существования материи. Диалектика абсолютного и относительного движения. Движение и покой 28.5 KB
  Диалектика абсолютного и относительного движения. В онтологическом смысле материя это бесконечное множество всех существующих в мире объектов и систем субстрат любых свойств связей отношений и форм движения; в мире нет ничего кроме движущейся материи . Относительность: нет просто движения движения вообще а есть только его отдельные формы ограничение его исторически и локально в пространстве. Прекращение одних форм движения замещается возникновением др.
31445. Пространство и время - формы существования материи. Развитие представлений о пространстве и времени в истории философской и научной мысли. Проблема взаимосвязи категорий «материя», «движение», «пространство» и «время». Значение теории относительности для 28.5 KB
  Развитие представлений о пространстве и времени в истории философской и научной мысли. В истории философии сложилось 2 концепции пространства и времени 1 В античности Демокрит и Эпикур. Именно матери определяет свойства пространства и времени. Свойства пространства и времени: общие и частные.
31446. Диалектика и её альтернативы (метафизика и релятивизм, эклектика) Объективная и субъективная диалектика. Диалектика как метод научного познания и как система знаний (общая характеристика). Принцип диалектики и их взаимосвязь 35 KB
  Диалектика и её альтернативы метафизика и релятивизм эклектика Объективная и субъективная диалектика. Диалектика как метод научного познания и как система знаний общая характеристика. Диалектика учение о всеобщих разнообразиях всеобщих взаимосвязях объект Диалектика искусство вести беседу суб Диалектика как метод используется как обобщенное систематизированное знание используемое в практике нового исследования. Диалектикасистема принципов категорий и законов которыми руководствуется человек в своей познавательной и...