19036

Спин 1/2. Спиновые функции, операторы спина. Матрицы Паули и их свойства. Разложение по спиновым функциям

Лекция

Физика

Лекция 18 Спин 1/2. Спиновые функции операторы спина. Матрицы Паули и их свойства. Разложение по спиновым функциям Целый ряд элементарных частиц – электроны нейтроны протоны и другие – обладают спином . По этой причине рассмотрим подробно свойства спиновых функций и

Русский

2013-07-11

1.1 MB

79 чел.

Лекция 18

Спин 1/2. Спиновые функции, операторы спина. Матрицы Паули и их свойства. Разложение по спиновым функциям

Целый ряд элементарных частиц – электроны, нейтроны, протоны и другие – обладают спином . По этой причине рассмотрим подробно свойства спиновых функций и операторов именно в этом случае.

В этом случае проекция спина на ось  может принимать два значения  и , а потому спиновые волновые функции представляют собой двухкомпонентные спиноры

    (1)

причем вероятности различных значений проекции спина на ось  равны

  (2)

Построим матрицы спиновых операторов в -представлении. В этом представлении базисными функциями являются собственные функции оператора . Очевидно такими функциями являются следующие спиноры

   (3)

Действительно, в состоянии  проекция спина на ось  принимает единственное значение , и, следовательно, эта функция – собственная для оператора , отвечающая собственному значению +1/2. Аналогично, функция  - собственная функция оператора , отвечающая собственному значению -1/2.

Очевидно, искомые матрицы спиновых операторов представляют собой матрицы размерности . Начнем с построения матрицы оператора . Так как функции (3) – собственные функции оператора , то для искомой матрицы оператора  выполнены следующие условия

   (4)

Из формул (4) находим

     (5)

Для построения матриц операторов  и  найдем сначала матрицы операторов . Поскольку коммутационные соотношения между операторами проекций спина такие же, как для операторов орбитального момента, то при действии операторов  на собственные функции оператора  получаются также собственные функции этого оператора, отвечающие на единицу большему или меньшему собственному значению. При действии операторов  () на собственную функцию, отвечающую максимальному (минимальному) собственному значению получается спиновая функция, тождественно равная нулю, то есть нулевой столбец. Поэтому

    (6)

Из соотношений (6) найдем, что

      (7)

Из (7) и определения операторов  находим

     (8)

Матрицы операторов ,  и  (5), (8) (без множителей 1/2) называются матрицами Паули и обозначаются ,  и .

Матрицу оператора  легко найти, возводя в квадрат и складывая матрицы операторов проекций момента (5), (8)

      (9)

Матрицу (9) можно было бы получить и по-другому из следующих рассуждений. Поскольку любая спиновая функция для частицы со спином 1/2 (то есть любой двумерный столбец) является собственной функцией оператора , отвечающей собственному значению  (так как квадрат вектора спина такой частицы имеет в любом состоянии определенное значение), то матрица оператора  является диагональной, причем диагональные матричные элементы равны , то есть матрица оператора  и есть матрица (9).

Свойства матриц Паули

А. Все матрицы Паули, как матрицы операторов физических величин являются эрмитовыми.

Б. Для всех матриц Паули выполнено условие , где 1 – единичная матрица. Это можно проверить непосредственно. Это утверждение есть следствие того факта, что квадрат проекции спина частицы со спином ½ в любом состоянии имеет определенное значение (т.к. есть две возможности для проекции спина +1/2 и –1/2, а квадраты обоих этих чисел – ¼).

В.

Г. Любая матрица (22) может быть представлена в виде: . Это связано с тем, что единичная матрица и три матрицы Паули () образуют полный набор матриц (2), так как пространство таких матриц четырехмерно – матрица определяется заданием четырех чисел, поэтому любые четыре линейно независимые матрицы будут образовывать базис в пространстве таких матриц).

Д. . В частности, , т.е. они антикоммутируют. Алгебра (так называют правила умножения матриц) очень простая - при перестановке матриц просто меняется знак их произведения.

Е. Поскольку матрицы Паули связаны с операторами проекции спина 7на координатные оси для них выполнены обычные коммутационные соотношения для операторов проекций момента на координатные оси

 

(двойка в этом соотношении связана с тем, что ).

Рассмотрим теперь такой вопрос. Пусть частица находится в состоянии

    (10)

Какие значения может принимать в этом состоянии проекция спина на ось  и с какими вероятностями? Для ответа на этот вопрос необходимо найти собственные функции оператора  и разложить по ним функцию (10).

Решаем уравнение

    (11)

или

     (12)

Система однородных алгебраических уравнений (12) имеет ненулевые решения в том случае, когда определитель этой системы равен нулю

     (13)

Отсюда находим возможные значения проекций спина на ось  (которые, как это и должно быть, равны возможным значениям проекции спина на ось ):

    (14)

Подставляя теперь собственные значения (14) в систему уравнений (12), находим собственные функции

  

  (15)

(множители возникли из условия нормировки).

Разложим теперь функцию (10) по собственным функциям (15). Это разложение имеет следующий вид

   (16)

Отсюда согласно постулатам квантовой механики находим вероятности различных значений проекции спина на ось  в состоянии (10):

 

 (17)

Из формул (17), в частности, следует, что если частица находится в состоянии с определенной проекцией спина на ось  ( или ), то вероятности различных значений проекции спина на ось  одинаковы, что находится в соответствии с общим результатом, полученным ранее для собственных состояний операторов момента импульса в квантовой механике. В заключение отметим, что из формул (17) для вероятностей следует, что среднее значений проекции спина на ось  равно

    (18)

Этот же результат можно получить, с использованеим квантовомеханической формулы для средних

    (19)

где  - спиновая функция (10), а матрица оператора  определяется формулой (8).

4


 

А также другие работы, которые могут Вас заинтересовать

60027. Улюблені англійські і американські письменники 43 KB
  During our previous lessons we read and talked about writers and books. And I know that you like to read books. This is very good, because as people say: “Books are our friends”. Why do we call books our friends?
60028. Урок иностранного языка 50 KB
  Der Lektor betritt (der Seminarraum, der Hörsaal, die Aula, das Sprachlabor, der Raum). 2. Die Studenten besprechen (der Text, die Regel, der Wortschatz, die Fehler). 3. Der Student besucht (der Unterricht, die Stunden, die Vorlesungen, das Kino).
60029. Хвороби шлунково-кишкового тракту та їхня профілактика 62.5 KB
  Щодня ви пізнаєте життя відкриваєте для себе світ відкриваєте світу себе. Усе життя для вас попереду. Мотивація навчальної діяльності Головним скарбом життя є не землі що ти завоював не багатства що в тебе в скринях головним скарбом життя є здоров’я...
60030. До якості освіти крізь призму інформаційних технологій 255 KB
  Як відомо якість освіти - це соціальна категорія яка визначає сукупність показників які характеризують різні аспекти навчальної діяльності освітнього закладу: зміст освіти форми та методи навчання матеріально-технічну базу...
60031. Конспект заняття з пізнавального розвитку з використанням технік арт-терапії. Сфери життєдіяльності «Природа», «Я Сам», «Люди» 37.5 KB
  Вихователь: Малята Хто б це міг бути На порозі групи з’являється ялинка. Вихователь: Що за гостя завітала до нас Діти: Ялиночка Вихователь: Як ви гадаєте чому саме зараз вона в нас з’явилася Діти: Тому що скоро Новий рік.
60032. Сорочинський ярмарок. Година дозвілля 62 KB
  Гей народ збирається Ярмарок починається Під музику діти в українському одязі з кошиками торбами возиками ідуть на ярмарок. З давніхдавен на Полтавщині в селі Сорочинці проводиться ярмарок. Отже на ярмарок ішли не тільки щоб продати та купити...
60033. ОСІННІЙ ЯРМАРОК 362.5 KB
  Уперед виходить Осінь. Осінь уклоняється: Добрий деньмої малята Й любі гості цього свята Нині знов із вами Я. Осіньось моє ім’я Осінь рідним краєм йде Сіє листя золоте.
60034. Призначення, можливості і класифікація систем обробки текстів. Основи роботи з текстовим процесором. Введення й редагування тексту 206 KB
  Розроблений фірмою Microsoft текстовий процесор Word є найпопулярнішим засобом для створення документів які крім текстової інформації можуть містити малюнки таблиці різноманітні символи математичні формули тощо.