19039

Примеры построения собственных функций оператора суммарного момента двух частиц. Сложение двух спинов ½. Классификация спиновых функций в системе из двух частиц

Лекция

Физика

Лекция 21 Примеры построения собственных функций оператора суммарного момента двух частиц. Сложение двух спинов . Классификация спиновых функций в системе из двух частиц Покажем как вычисляются коэффициенты КлебшаГордана на нескольких примера. Пусть система из ду...

Русский

2013-07-11

660.5 KB

15 чел.

Лекция 21

Примеры построения собственных функций оператора суммарного момента двух частиц. Сложение двух спинов ½. Классификация спиновых функций в системе из двух частиц

Покажем как вычисляются коэффициенты Клебша-Гордана на нескольких примера. Пусть система из дух невзаимодействующих частиц находится в состоянии, в котором моменты импульса первой и второй частицы и их проекции на ось  имеют определенные значения , , , . Какие значения может принимать в этом состоянии квадрат суммарного момента и с какими вероятностями?

Как это было показано в предыдущей лекции, идея решения этой задачи заключается в разложении данной в условии волновой функции системы частиц с определенными моментами и проекциями обеих частиц по состояниям с определенным суммарным моментом. Коэффициенты разложения, которые и являются (по определению) коэффициентами Клебша-Гордана, дадут искомые вероятности. Находят это разложение следующим образом.

Согласно теореме Клебша-Гордана возможные значения суммарного момента системы из двух частиц в состоянии с определенными значениями моментов каждой частицы  и  суммарный момент не может принимать никакие другие значения, кроме: , , …,  (то есть от модуля разности чисел  и  до их суммы через единицу). Это означает, что в разложении функции

  (1)

по собственным функциям операторов , , ,  (эти функции были обозначены в предыдущей лекции как

     (2)

не могут присутствовать никакие другие слагаемые, кроме слагаемых с перечисленными значениями . При этом коэффициенты при некоторых из этих слагаемых могут быть нулевыми (то есть, фактически, они также не входят в разложение).

Второе обстоятельство, которое используется при нахождении коэффициентов Клебша-Гордана, это то, что проекция суммарного момента  в состояниях с определенными проекциями моментов обеих частиц  и  имеет определенное значение, равное .

Итак, рассмотрим данное в условии состояние

  (3)

В этом состоянии суммарный момент не может принимать никакие другие значения, кроме 4, 5, 6, 7, 8, 9, 10, а проекция суммарного момента принимает значение 10. А поскольку проекция не может быть меньше момента, то для суммарного момента остается единственная возможность . Отсюда следует, что состояние (3) является собственным и для операторов

  (4)

Следовательно, один из коэффициентов Клебша-Гордана мы нашли

    (5)

Очевидно, аналогичная ситуация будет иметь место при сложении двух моментов, если их проекции принимают минимально возможные значения.

Рассмотрим теперь случай, когда одна из проекций на единицу меньше максимальной. Например, пусть система двух частиц находится в состоянии, в котором моменты импульса первой и второй частицы и их проекции на ось  имеют определенные значения , , , . Какие значения может принимать в этом состоянии квадрат суммарного момента и с какими вероятностями?

Разложим волновую функцию рассматриваемого состояния с определенными значениями квадратов моментов каждой частицы и их проекций на ось

  (3)

по функциям :

 (4)

Очевидно, в сумме (4) присутствуют только два слагаемых с  и с , поскольку, во-первых, в сумме не могут присутствовать слагаемые с другими значениями $J$, кроме 3, 4, 5, и, во-вторых, . То есть

 (5)

Таким образом, при измерении суммарного момента в состоянии (3) можно обнаружить два значения  или , причем вероятности этих значений суммарного момента  определяются квадратами коэффициентов Клебша-Гордана

    (6)

Для вычисления коэффициентов Клебша-Гордана можно воспользоваться следующим приемом. Рассмотрим собственную функцию операторов , , , , отвечающую квантовым числам , , , . Поскольку эта функция отвечает максимальным проекциям моментов отдельных частиц, она является и собственной функцией операторов

   (7)

Подействуем на правую и левую часть равенства (7) оператором

    (8)

. Используя известное равенство

   (9)

где  - собственная функция операторов квадрата момента и его проекции на ось , и то обстоятельство, что функция  есть собственная функция операторов , , , , получим в левой части

 (10)

Аналогично найдем результат действия оператора  на правую часть формулы (7)

    (11)

Из формул (10), (11) находим

  (12)

Поскольку и разложение функций  по функциям , и разложение  по  определяются коэффициентами Клебша-Гордана, из (12) заключаем, что

     (13)

Таким образом, один из коэффициентов Клебша-Гордана, входящих в формулу (5) мы нашли. Чтобы найти другой, заметим, что разложение функции  по функциям  содержит те же слагаемые, что и разложение функции  (12). А поскольку эти функции должны быть ортогональны, то

  (14)

Поэтому

     (15)

Точно также с помощью действия оператора  на функции (12) или (14) и использования условий ортогональности собственных функций, отвечающих различным собственным значениям находятся и остальные коэффициенты Клебша-Гордана.

Такая же техника применяется для построения спиновых функций системы двух частиц. Пусть, например, имеются две частицы со спином ½ каждая. Построим волновые функции состояний системы, в которых суммарный спиновый момент имеет определенное значение.

Очевидно, что состояния

 (16)

отвечают суммарному спину  и проекциям суммарного спина  в первом состоянии и  - во втором. Это связано с тем, что в состояниях (16) проекции спинов каждой частицы имеют обе максимальные или обе минимальные значения (в формулах (16) индекс около столбца указывает, к какой частице – первой или второй – он относится).

Подействуем на первое из состояний (16) оператором . В результате получим с использованием (9)

   (17)

С другой стороны, тот же результат можно получить, действуя операторами  и  на спиновые функции каждой частицы

   (18)

Из формул (18), (19) получаем волновую функцию состояния с суммарным спином, равным 1, а проекцией, равной 0:

   (19)

Теперь из условия ортогональности функции (19) строим волновую функцию состояния с суммарным спином, равным 0:

  (20)

Функции (16) (две функции), (19) и (20) являются базисной системой функций в пространстве спиновых состояний системы из двух частиц со спином ½ каждая, причем все эти функции отвечают определенному суммарному спину, и всем возможным значениями его проекции на ось .

4


 

А также другие работы, которые могут Вас заинтересовать

23722. Метод проб и ошибок 61 KB
  – Какие уравнения мы учились решать на прошлом уроке Уравнения вида x аx = b – Что мы использовали при решении уравнений Свойства чисел. – Какие уравнения мы ещё получали при переводе текста задачи на математический язык Уравнения вида: x x а = b. – Подберите корень уравнения: – Объясните способ решения который вы использовали. – А есть ли у этого уравнения другие корни 3.
23723. Метод проб и ошибок 69.5 KB
  Основная цель: 1 Тренировать способность к использованию метода проб и ошибок для решения уравнений. – Какие уравнения мы учились решать на прошлом уроке Уравнения вида x x а = b – Что мы использовали при решении уравнений Метод проб и ошибок. – Сегодня мы на уроке проанализируем на сколько хорошо вы усвоили метод проб и ошибок.
23724. Перевод условия задачи на математический язык 55 KB
  Обозначим за x – площадь третьей комнаты. Вторая на 3 м2 больше третьей значит её площадь равна x 3 м2. Первая комната в 2 раза меньше второй чтобы найти её площадь надо площадь второй комнаты разделить на 2 т. Общая площадь трёх комнат 42 м2.
23725. Перевод условия задачи на математический язык 53 KB
  Длина в м Ширина в м Площадь в м2 В классе даются разные ответы возможно кто – то из учащихся совсем не сможет выполнить задание. – Почему в классе разные результаты – Что общего и чем отличается данная задача от тех которые мы решали на прошлом уроке Общее то что в этой задаче неизвестна ни длина ни ширина прямоугольника а только известно что длина на 3 м больше ширины а отличаются эти задачи схемой для данной задачи схемой будет таблица. Возможны варианты: Длина в м Ширина в м Площадь в м2 x 3 x xx 3 или 70...
23726. Перевод условия задачи на математический язык 58.5 KB
  Количество детей в одном автобусе Количество автобусов Общее количество детей Большие автобусы Маленькие автобусы 3. – Какую формулу нужно использовать для выполнения задания Чтобы найти сколько всего человек поехало на экскурсию надо количество людей в одном автобусе умножить на количество автобусов т. Количество детей в одном автобусе Количество автобусов Общее количество детей Большие автобусы x 6 y 1 x 6y 1 или 252 Маленькие автобусы x y xy или 252 Работу можно организовать в группах или используя подводящий диалог. –...
23727. Перевод условия задачи на математический язык 46.5 KB
  – Какими математическими выражениями может быть их перевод Числовое или буквенное выражение уравнение вида ax x = b уравнение вида xx a = b двумя уравнениями с двумя переменными xy = c x ay b = с – В каком ещё виде может быть перевод условия задачи на математический язык Возможны разные ответы в том числе и ответ: одно уравнение с двумя неизвестными. – Уменьшите число 640 на 76. Запишите на математическом языке сколько всего единиц содержит трехзначное число...
23728. Признаки делимости на 10, на 5, на 2 43.5 KB
  – Известно что t – нечетное число. – Какое число может быть лишним Например 14 – у него сумма цифр нечетное число а у остальных – четное; 28 – кратно 4 а остальные – нет; 42 – его сумма цифр кратна 3 а у остальных чисел – нет и т. – Назовите четырехзначное число кратное 2. – Сформулируйте гипотезу о том по какому признаку можно определить – является данное число четным или нет.
23729. Признаки делимости на 10, на 5, на 2 44.5 KB
  – Что общего в числах полученного ряда Все числа кратны 5. Эти числа оканчиваются на 0. – Приведите пример четного числа удовлетворяющего неравенству x 80. – Какие остатки могут получаться при делении числа на 100.
23730. Свойства и признаки делимости 71.5 KB
  2 а x не делится на 10 т. 2 а x делится на 3; число оканчивается любой цифрой кроме 0; б x делится на 7; б x не делится на 5; в x не делится на 2 т. любое нечётное число; в x делится на 3; г x делится на 9. г x не делится на 9.