19041

Правило квантования Бора-Зоммерфельда. Примеры. Квазиклассический коэффициент прохождения через барьер. Вероятность альфа распада в квазиклассическом приближении

Лекция

Физика

Лекция 23 Правило квантования БораЗоммерфельда. Примеры. Квазиклассический коэффициент прохождения через барьер. Вероятность альфа распада в квазиклассическом приближении Квазиклассические решения и условия их сшивки в точках поворота позволяют получить в кв...

Русский

2013-07-11

384.5 KB

11 чел.

Лекция 23

Правило квантования Бора-Зоммерфельда. Примеры. Квазиклассический коэффициент прохождения через барьер. Вероятность альфа распада в квазиклассическом приближении

Квазиклассические решения и условия их «сшивки» в точках поворота позволяют получить «в квадратурах» (то есть через интегралы, а не решение дифференциального уравнения) условие на уровни энергии. Такие условия называются правилами квантования. Рассмотрим решение уравнения Шредингера при некоторой энергии , при которой могут существовать стационарные состояния дискретного спектра ().

    (1)

где

    (2)

Обозначим классические точки остановки для классической частицы с этой энергией как  и  (для определенности ). Тогда при  и  величина  отрицательна, при  - положительна. Поэтому квазиклассические решения уравнения Шредингера в этих областях имеют вид

       (3)

    (4)

       (5)

В качестве нижних пределов интегрирования в этих формулах выбраны левая и правая точки остановки соответственно. В формулах (3), (5) оставлены только затухающие на обеих бесконечностях функции. Функции (3)-(5) являются хорошими приближениями для ограниченных решений уравнения Шредингера вдали от точек остановки  и . Согласно условиям сшивки функция (4) вне ямы и функция

    (6)

внутри ямы вдали от точки поворота  являются приближениями одного и того же решения. Любое другое квазиклассическое решение внутри ямы, будучи продолжено в область , будет неограничено возрастать. Аналогично функция (5) и функция

    (7)

внутри ямы вдали от точки поворота  являются приближениями одного и того же решения. Любое другое квазиклассическое решение внутри ямы, будучи продолжено в область , будет неограничено возрастать. Поэтому ограниченное при всех значениях  решение существует только тогда, когда функции (6) и (7) совпадают или отличаются только знаком, то есть аргументы косинусов в (6) и (7) отличаются на . Отсюда находим

   (8)

Соотношение (8) выполняется только при определенных значениях энергии , входящей в функцию  в подынтегральной функции и в пределы интегрирования – классические точки остановки при данной энергии  и , которые определяется из уравнения

     (9)

Поэтому уравнение (8) является условием для энергий стационарных состояний дискретного спектра и называется правилом квантования Бора-Зоммерфельда.

Из правила квантования Бора-Зоммерфельда можно получить условие на количество состояний дискретного спектра в тех или иных потенциалах. Имеем

  (10)

(мы записали правило квантования через классический импульс  и проинтегрировали в «двух направлениях» – от до  и от  до ). Если интегрирование в (10) производится по доступной для «связанного» движения области (ограниченной «классическими» барьерами), то  в (10) - максимальный номер уровня системы, или количество связанных состояний в системе. Поэтому

 (11)

Поскольку интеграл  определяет доступный системе фазовый объем, из формулы (11) следует, что существует прямая пропорциональная связь объема фазового пространства, занимаемого частицей при некоторой энергии , и количества связанных состояний с энергией, меньшей . Можно сказать, что одно связанное состояние «занимает ячейку фазового пространства» объемом . В трехмерном случае - объемом .

Получим еще одно важное следствие правила квантования. Рассмотрим два уровня - с номером  и соседний, с номером . Тогда

  (12)

Здесь

  (13)

Разложим (12) по малому параметру :

  (14)

где  - «классическая» скорость частицы, а интеграл

 (15)

имеет смысл «классического» периода колебаний при данной энергии, а  - осцилляторной частоты. Таким образом, для каждой энергии есть своя классическая частота колебаний. Расстояние между соседними уровнями (как это следует из (14)) и в малых участках ). Это значит, что квазиклассических спектр эквидистантен.

Рассмотрим теперь в рамках квазиклассического приближения прохождение через потенциальные барьеры. Пусть частицы с энергией  падают на барьер слева и пусть классическими точками поворота при данной энергии являются точки  и  (; см. рисунок). Если бы барьер был абсолютно непроницаем, то под барьером было бы только затухающее решение, поэтому перед барьером (в области  нужно взять квазиклассическую функцию в виде

   (16)

где введена «классическая» скорость . В подбарьерной области имеем

 (17)

Далее, из условия сшивки квазиклассических функций можно доказать, что функция

 (18)

при  и функция

 (19)

при  являются квазиклассическими выражениями одного и того же решения уравнения Шредингера справа и под барьером. Поэтому из формул (17)-(19) заключаем, что решение (17) в области  перейдет в функцию

 (20)

Вычисляя по функции (20) плотность потока находим коэффициент прохождения барьера

 (21)

Формально, при переходе к классике (), получим , как и должно быть, поскольку в классике частицы не могут пересечь такой барьер. По порядку величины, показатель экспоненты есть величина, обратная параметру квазиклассичности

 (22)

Отсюда .

Используя формулу (22) можно оценить вероятность -распада в квазиклассическом приближении. Вероятность распада пропорционально коэффициенту прохождения кулоновского барьера :

  (23)

где

 (24)

- радиус действия ядерных сил. Вычисляя интеграл с помощью замены:

  (25)

  (26)

где введена скорость -частицы. Видно, что показатель экспоненты большой и отрицательный - вероятность распада мала, так как

 (27)

(28)

а скорости -частиц после распада составляют  от скорости света. Поэтому показатель степени есть

  (30)

Подтверждением квазиклассической теории -распада является наблюдаемая в эксперименте очень резкая зависимость скоростей распада от энергии -частиц. В теории эта зависимость

    (31)

4


 

А также другие работы, которые могут Вас заинтересовать

33920. Определение структурных средних в дискретных вариационных рядах 14.62 KB
  Мода это наиболее часто встречающийся вариант ряда. Модой для дискретного ряда является варианта обладающая наибольшей частотой. Медиана это значение признака которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.
33921. Определение структурных средних в интервальном вариационном ряду 41.92 KB
  При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал по максимальной частоте а затем значение модальной величины признака по формуле: где: значение моды нижняя граница модального интервала величина интервала заменить на iМе частота модального интервала частота интервала предшествующего модальному частота интервала следующего за модальным Медиана это значение признака которое лежит в основе ранжированного ряда и делит этот ряд на две равные по...
33922. Закономерные изменения частот за счет изменения варьирующего признака в вариационных рядах 12.67 KB
  Главной задачей анализа вариационных рядов является выявление закономерностей распределения и характера распределения. Тип закономерности распределения это отражение в вариационных рядах общих условий определяющих распределение в однородной совокупности. Следовательно должна быть построена кривая распределения.
33923. Виды дисперсий. Правило сложения дисперсий 23.06 KB
  Правило сложения дисперсий Вариация признака происходит в резте влияния на него различных факторов. Признакам на вариации под влиянием осн. Отклонение индивидуальных значений результативного признака от ср.значения результативного признака для всей совокупности можно представить как сумму отклонений где i текущий номер признака общей совти; j – текущий номер группы в интером ряду распределения; среднее значение результативного признака в jгруппе.
33924. Использование показателей вариации в анализе взаимосвязей социально-экономических явлений 15.36 KB
  Эмпирическое корреляционное отношение характеризует тесноту связи; рассчитывается как корень квадратный из эмпирического коэффициента детерминации Оба показателя находятся в пределах от 0 до 1 при этом чем ближе показатели к 1 тем связь между изучаемыми признаками теснее. Для оценки тесноты связи с помощью корреляционного отношения можно воспользоваться шкалой Чеддока: 0103связь слабая 0305связь умеренная 0507связь заметная 0709связь тесная 09099связь весьма тесная.
33925. Теоретические основы выборочного наблюдения 12.04 KB
  Теоретические основы выборочного наблюдения. Выборочное наблюдение относится к несплошному виду наблюдения. Преимущества выборочного наблюдения: экономия средств оперативность получения результатов возможность расширения программы наблюдения возможность проверки качества продукции которая при этом уничтожается высокая достоверность результатов. Совокупность которая получилась в результате отбора единиц для наблюдения наз.
33926. Простая случайная выборка 12.98 KB
  Простая случайная выборка отбор единиц из генеральной совокупности путем случайного отбора но при условии вероятности выбора любой единицы из генеральной совокупности.возвращается в генер. не возвращается в генеральную совокупность. Характеристика генер.
33927. Понятие и виды рядов динамики. Требования к рядам динамики 13.07 KB
  Понятие и виды рядов динамики. Требования к рядам динамики. Ряд динамики ряд стат. Ряд динамики характеризуют 2 элемента: показатель времени t и уровни ряда y – числовая характеристика изучаемого явления.